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ABSTRACT 18 

Consumers must track and acquire resources in complex landscapes. Much discussion has 19 

focused on the concept of a ‘resource gradient’ and the mechanisms by which consumers can 20 

take advantage of such gradients as they navigate their landscapes in search of resources. 21 

However, the concept of tracking resource gradients means different things in different contexts.  22 

Here we take a synthetic approach and consider six different definitions of what it means to 23 

search for resources based on density or gradients in density. These include scenarios where 24 

consumers change their movement behavior based on the density of conspecifics, on the density 25 

of resources, and on spatial or temporal gradients in resources. We also consider scenarios 26 

involving non-local perception and a form of memory. Using a continuous space, continuous 27 

time model that allows consumers to switch between resource-tracking and random motion, we 28 

investigate the relative performance of these six different strategies. Consumers’ success in 29 

matching the spatiotemporal distributions of their resources differs starkly across the six 30 

scenarios. Movement strategies based on perception and response to temporal (rather than 31 

spatial) resource gradients afforded consumers with the best opportunities to match resource 32 

distributions. All scenarios would allow for optimization of resource matching in terms of the 33 

underlying parameters, providing opportunities for evolutionary adaptation, and links back to 34 

classical studies of foraging ecology. 35 

 36 

INTRODUCTION 37 

Successful acquisition of resources is essential to an individual’s survival and 38 

reproduction. The acquisition problem is especially challenging in seasonal or otherwise 39 

dynamic landscapes where the spatial location of resources changes over time. This absence of 40 

consistently available resources leaves consumers with several options.  Consumers may track 41 
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the shifting positions of resources that themselves move across the landscape, they may move to 42 

other regions to take advantage of different resources, or they may stay local but switch to 43 

alternative resources.  Each of these foraging strategies requires that consumers monitor resource 44 

availability and respond through movement or changes in feeding style. However, many routes 45 

to resource monitoring and movement decision-making exist, and different strategies are unlikely 46 

to exhibit the same level of profitability with regard to resource acquisition (Grünbaum 1998). 47 

Historically, researchers working on foraging-related movement have sought to understand the 48 

contributions of three elements:  search strategies, behavioral changes, and cues for movement. 49 

Here, we bring together these three elements in a synthetic approach that investigates how 50 

consumers’ responses to alternative ‘resource gradients’ translate into foraging success. 51 

As consumers seek out resources, they can employ a wide variety of search strategies. 52 

Some of these strategies operate on large scales and are long-term in nature. For example, some 53 

birds and ungulates ‘surf the green wave’ as they time their migratory journeys to match seasonal 54 

changes in the availability of palatable, nutrient-rich resources as functions of latitude or 55 

elevation (Aikens et al. 2020).  In other taxa, such as some Brazilian marsupials, perceptual 56 

range plays a key role in determining whether the animals move randomly (when no forest was 57 

nearby) or in a directed fashion (when they could perceive a nearby forest patch) (Prevedello et 58 

al. 2011). Similarly, Holdo et al. (2009) found that long-distance perception that allowed 59 

tracking of conditions over large spatial scales was crucial to the success of wildebeests’ 60 

migratory journeys in the Serengeti and attention solely to small-scale gradients was insufficient 61 

for migratory success.   In contrast, blue whales appear to rely not on perception per se, but 62 

rather on spatial memory as they migrate. The whales time their patterns of space use to exploit 63 
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those regions in which resources have been both on average abundant and reliably available over 64 

many years (Abrahms et al. 2019, Fagan 2019).   65 

Evidence suggests that such search strategies do not exist in isolation, but rather are used 66 

by consumers in different combinations, often as a function of context. With regard to switching 67 

between search strategies, a key tension is between searching for new resources and not 68 

wandering too far. This is particularly important when resources are spatiotemporally 69 

heterogeneous.  Mathematically, this tension can appear as a balance between random search 70 

(diffusion) and range residency (movement with a central tendency) as animals switch between 71 

movement modes as a function of their spatial context. A growing list of empirical examples 72 

demonstrates that such context-dependent behavioral switching between movement modes is 73 

quite widespread. A few examples include mosquitoes (Rjo and DeGennaro 2017), tuna 74 

(Newlands et al. 2004), opossums (Prevedello et al. 2011), elk (Morales et al. 2004), and 75 

woodpeckers (Vergara et al. 2018). Moreover, robust statistical tools are increasingly available 76 

for deconstructing empirical movement paths into alternative movement modes and identifying 77 

behavioral change points (Morales et al. 2004, Gurarie et al. 2009, 2016). Key open questions 78 

center on the factors that precipitate such changes in behavior and how different forms of 79 

context-dependent switching influence resource acquisition. 80 

To some degree, modeling studies have also explored the consequences of combining 81 

movement modes in various mixtures. Frequently, diffusion (random search) and advection 82 

(gradient following) are explored together, often with the goal of identifying optimally blended 83 

movement strategies that yield evolutionarily stable strategies (Cantrell et al. 2008, 2018, 2020; 84 

Lam and Lou 2014). Other modeling studies have directly considered switching between 85 

alternative movement modes; that is, they explored situations where, rather than simultaneously 86 
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blending two movement modes,  individuals could be considered to be in either one movement 87 

mode or another. Skalski and Gilliam (2003) explored how switching between slow and fast 88 

movement states (which occurred independent of spatial context) influenced a population’s 89 

spatial distribution. More recently, Tyson et al. (2011) considered spatially independent 90 

behavioral switching terms for a model where foragers had both fast-moving diffusive and slow-91 

moving advective-diffusive states. They found that single-movement-mode models (in which the 92 

forager population was homogeneously diffusive or advective-diffusive) provided a worse fit to 93 

data for both caribou and honeybees than did the model with behavioral switching. Different 94 

types of intermittent movement (Gleiss et al. 2011), especially so-called burst-and-coast 95 

movement by fish (Kramer and McLaughlin 2001, McLaughlin and Grant 2001), provide yet 96 

more examples in which animals sequentially switch between movement types. Burst movement 97 

is thought to provide rapid propulsion that alternates with coast movement during which fish can 98 

better perceive their surroundings. Fagan et al. (2020) analyzed a model in which switching 99 

between movement modes depended on spatial context. They found that behavioral switching 100 

was most beneficial when an organism’s gradient-following abilities were weak compared to its 101 

overall capacity for movement. Moreover, they found that an organism’s perceptual range was a 102 

key determinant of whether behavioral switching was advantageous or disadvantageous in the 103 

search for resources.  104 

Just as different movement strategies, and opportunities for switching between strategies, 105 

present consumers with a range of options for mobility, so too do the proximal cues on which 106 

resource-related movement decisions are based.  For example, Dusenberry (1998) demonstrated 107 

that free-swimming bacteria can be differentially advantaged by using temporal gradients versus 108 

spatial gradients in their quest for resources. In that system, movements based on following 109 
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temporal gradients were especially valuable in providing superior access to resources when those 110 

resources were at low densities. In another example, numerous species of tropical frugivorous 111 

birds appear to track temporal changes in fruit abundance, shifting their spatial activity in 112 

response to increases and decreases in fruit abundance (Loiselle and Blake 1991). In other cases, 113 

following spatial rather than temporal gradients appears essential to success, and small scale 114 

spatial gradients are particularly useful for consumers that rely on chemosensation. For example, 115 

catfish follow centimeter-scale spatial (rather than temporal) gradients in nutrient concentration 116 

as they seek out resources (Johnson and Teeter 1980).  Similarly, rats effectively ‘smell in 117 

stereo’ as they respond to highly localized bilateral differences in the concentration of odorants 118 

(Rajan et al. 2006), whereas moles combine serial scent detection (i.e., repeated ‘sniffing’) with 119 

bilateral olfaction to identify the gradients that guide their search for resources (Catania 2013). 120 

Here we seek to synthesize these three factors (i.e., alternative search strategies, 121 

switching between movement modes, and diverse cues for movement) into a single modeling 122 

framework to explore in detail how these features influence the abilities of consumers to track 123 

and match the spatiotemporal distribution of resources in dynamic landscapes. Intriguingly, we 124 

find that different search-movement strategies perform best under different resource situations, 125 

suggesting conditions under which alternative resource dynamics might select for the evolution 126 

of alternative foraging strategies. 127 

METHODS 128 

A dynamic resource: We will assume a one-dimensional binary resource landscape of habitat 129 

patches and non-habitat that is temporally dynamic. Fagan et al. (2017) explored how alternative 130 

resource functions influence the ability of consumers to match the distribution of their resources. 131 
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Here, we consider one of the resource functions studied in that paper, the Pulsed Gaussian 132 

resource: 133 𝑚𝑚(𝑥𝑥, 𝑡𝑡) =
1√2𝜋𝜋𝜎𝜎 exp �− (𝑥𝑥−𝜇𝜇)22𝜎𝜎2 � sin2(𝜔𝜔 𝑡𝑡/2)                              (1) 134 

where µ and σ are, respectively, the mean and standard deviation of the resource pulse and 𝜔𝜔 is 135 

the temporal frequency of the pulse. Equation (1) corresponds to a resource patch with smoothly 136 

varying edges that does not change position spatially but does increase and decrease in 137 

abundance over time.  138 

We consider situations in which there either is a single resource patch that pulses in time 139 

or two identical pulsing resource patches that are shifted by half a period relative to one another.  140 

The latter scenario corresponds to a strongly seasonal landscape where there exists opportunity 141 

for migration to emerge between the two resource patches that are oscillating out-of-phase. 142 

Consumers Switch between Random Search and Range-residency: Living on this dynamic 143 

resource landscape is a population of consumers. We consider a population in which the 144 

consumers can switch between two distinct modes of dispersal. Tyson et al. (2011) and Fagan et 145 

al. (2019) explored scenarios in which consumers switch between a random search mode and a 146 

mode in which there exists movement in response to a resource gradient. Here, motivated by 147 

recent developments in the statistical analysis of animal tracking data (Fleming et al. 2014, 148 

Noonan et al. 2019), we do something a bit different. Specifically, we consider the spatial 149 

dynamics of consumers that may have home ranges, but which can switch between a random 150 

search mode and a range-resident mode.  Note that this pair of movement modes is different than 151 

the pair of modes involved in chemotaxis (Keller and Segel 1971) and area-restricted search 152 

models (Kareiva and Odell 1987).  In those cases, organisms can switch between random turning 153 

(employed within a resource patch) and ballistic motion (employed between resource patches). 154 
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Here, motivated by recent studies on some vertebrate species (Prevedello et al. 2011, Tyson et al. 155 

2011), our foragers use random motion between resource patches and their more sophisticated 156 

(and more spatially intensive) movement mode (here, home ranging) in the vicinity of resource 157 

patches. 158 

To build our model of movement, we assume that the density of the population engaged 159 

in diffusive (random search) behavior at position x and time t is denoted u(x,t), and the density 160 

engaged in range-resident behavior is denoted v(x,t).  We write 161 

𝜕𝜕𝜕𝜕(𝑥𝑥,𝑡𝑡)𝜕𝜕𝑡𝑡 = 𝐷𝐷 𝜕𝜕2𝜕𝜕𝑥𝑥2 𝑢𝑢�����𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠ℎ − 𝛼𝛼(𝑥𝑥, 𝑡𝑡)𝑢𝑢�����𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑠𝑠ℎ𝑠𝑠𝑟𝑟𝑖𝑖 𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠ℎ
+ 𝛽𝛽(𝑥𝑥, 𝑡𝑡)𝑣𝑣�����𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑠𝑠ℎ𝑠𝑠𝑟𝑟𝑖𝑖 𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠ℎ

𝜕𝜕𝜕𝜕(𝑥𝑥,𝑡𝑡)𝜕𝜕𝑡𝑡 =

⎣⎢⎢
⎢⎢⎡ 𝜀𝜀 𝜕𝜕2𝜕𝜕𝑥𝑥2 𝑣𝑣���𝑙𝑙𝑟𝑟𝑠𝑠 𝑙𝑙𝑠𝑠𝜕𝜕𝑠𝑠𝑙𝑙 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑟𝑟𝑟𝑟𝜕𝜕𝑠𝑠𝑟𝑟𝑠𝑠𝑟𝑟𝑡𝑡

+ 𝜃𝜃 𝑟𝑟𝑟𝑟𝑥𝑥 (𝑥𝑥 − 𝜇𝜇)𝑣𝑣���������ℎ𝑟𝑟𝑟𝑟𝑠𝑠 𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑠𝑠𝑟𝑟𝑖𝑖𝑠𝑠𝑠𝑠𝑟𝑟𝑡𝑡𝑟𝑟𝑟𝑟𝑙𝑙 𝑡𝑡𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑟𝑟𝑠𝑠𝑡𝑡
⎦⎥⎥
⎥⎥⎤

�������������������𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑠𝑠 𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠𝑟𝑟𝑠𝑠𝑡𝑡
+ 𝛼𝛼(𝑥𝑥, 𝑡𝑡)𝑢𝑢�����

𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑠𝑠ℎ𝑠𝑠𝑟𝑟𝑖𝑖 𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑠𝑠 𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠𝑟𝑟𝑠𝑠𝑡𝑡 − 𝛽𝛽(𝑥𝑥, 𝑡𝑡)𝑣𝑣�����
𝑠𝑠𝑠𝑠𝑠𝑠𝑡𝑡𝑠𝑠ℎ𝑠𝑠𝑟𝑟𝑖𝑖 𝑓𝑓𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑠𝑠 𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠𝑟𝑟𝑠𝑠𝑡𝑡                           (2) 162 

where the parameter D is the rate of diffusion undertaken by the portion of the population that is 163 

in the random search mode. The functions 𝛼𝛼(𝑥𝑥, 𝑡𝑡) and 𝛽𝛽(𝑥𝑥, 𝑡𝑡), defined below, are generic 164 

functional forms for the rates of switching between the random-search and range-resident 165 

movement modes.   The term 166 𝜀𝜀 𝜕𝜕2𝜕𝜕𝑥𝑥2 𝑣𝑣 + 𝜃𝜃 𝑟𝑟𝑟𝑟𝑥𝑥 (𝑥𝑥 − 𝜇𝜇)𝑣𝑣                                                                      (3) 167 

represents the overall movement of the portion of the population engaged in range resident 168 

behavior. In (3), 𝜀𝜀 ≪ 1 represents a small amount of background random movement (this is 169 

necessary for certain theorems about partial differential equations to hold true), and 𝜃𝜃 quantifies 170 

the rate of mean reverting (home ranging) movement. The term 𝜇𝜇 (from Eq. 1) represents the 171 

consumers’ ‘attractive target.’ This corresponds to the center of the resource patch in scenarios 172 
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where there is only a single, fluctuating area with resources. This location 𝜇𝜇 could also be 173 

thought of as the location of a den or nest site. In more complicated scenarios, 𝜇𝜇 could be 174 

generalized to a function, x[∙],  that allows for more than one attractive target, and these could 175 

correspond to the physical centers of multiple or temporally oscillating resource patches. In other 176 

scenarios, where consumers are able to distinguish resource habitat from non-habitat, but where 177 

perception is limited and the physical center of a resource patch may not be detectable, the 178 

attractive target could correspond to a location with favorable conditions inside the patch at the 179 

limit of detection.  180 

Six Scenarios for Switching Between Movement Modes: To explore the interplay between 181 

movement modes, search strategies, and cues for movement, we focus on the switching functions 182 

 𝛼𝛼(𝑥𝑥, 𝑡𝑡) and 𝛽𝛽(𝑥𝑥, 𝑡𝑡) and the impacts that these terms have on the ability of the consumers to track 183 

their resources. To explore the importance of the context of behavioral switching, we simplify 184 

other aspects of the model, and depart from previous treatments in Fagan et al. (2017, 2020) and 185 

Gurarie et al. (2021). We consider six different scenarios, of increasing complexity, in which 186 

different considerations govern the consumers’ switching between random movement and home-187 

ranging behavior.  All six of these scenarios, which range from simple density dependence 188 

through more complicated situations involving perception or spatial memory, have either been 189 

utilized previously in theoretical studies of animal movement or discussed verbally in papers on 190 

animal movement and decision-making behavior (e.g., Noonan et al. 2019, Abrahms et al. 2019, 191 

Aikens et al. 2020). 192 

Scenario 1: Switching Depends on Consumer Density.  In this scenario, we assume that 193 

consumers change between the random search and range resident behavior only as a function of 194 

their own density.  That is, these consumers are not able to detect or react to changes in resource 195 
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availability (in space, or in time) but they can tell when they are crowded, and switch behaviors 196 

as functions of the density of their conspecifics.   We write 197 

𝛼𝛼𝑆𝑆1(𝑥𝑥, 𝑡𝑡) = �  𝑠𝑠                if   𝑢𝑢 + 𝑣𝑣 > 𝑤𝑤0
  0               if   𝑢𝑢 + 𝑣𝑣 ≤ 𝑤𝑤0       ,                                      (4) 198 

which means that consumers will switch from random search mode to range resident mode at 199 

rate 𝑠𝑠 if the local total consumer density (𝑢𝑢 + 𝑣𝑣) exceeds a threshold value,  𝑤𝑤0, and will 200 

otherwise remain in random search mode.  Similarly, 201 

𝛽𝛽𝑆𝑆1(𝑥𝑥, 𝑡𝑡) = �  0                  if   𝑢𝑢 + 𝑣𝑣 > 𝑤𝑤0
  𝑠𝑠                  if   𝑢𝑢 + 𝑣𝑣 ≤ 𝑤𝑤0       ,                                      (5) 202 

such that consumers will switch from range residency to random search mode at rate 𝑠𝑠 if the 203 

local total consumer density (𝑢𝑢 + 𝑣𝑣) remains below a threshold value,  𝑤𝑤0, and will otherwise 204 

remain in range resident mode. For simplicity, we will consider the switching rates in Equations 205 

(4-5) to be the same, but these could certainly differ as a function of the consumers’ current 206 

behavioral mode, as could the threshold density for switching between movement modes.  207 

These assumptions correspond roughly to assumptions of the ‘local enhancement’ 208 

framework for seabirds foraging from colonies (Buckley 1997). Likewise, there are conceptual 209 

connections to results described in Cvikel et al. (2015) and Egert-Berg et al. (2018), wherein bats 210 

cue in on the location of their own kind in determining where to forage. However, the model 211 

does not lead to aggregation on conspecifics per se (unless 𝜃𝜃 = 0). Instead, the model would be 212 

better interpreted as representing aspects of social learning with discovery. To see this, consider 213 

the subpopulation with density 𝑢𝑢 as ‘uninformed about resources’ and the subpopulation with 214 

density 𝑣𝑣 as ‘informed.’ Then, note that 𝑣𝑣(𝑥𝑥, 0) = 0 and 𝑢𝑢(𝑥𝑥, 0) =  𝑢𝑢0 is an equilibrium if 𝑢𝑢0 <215 

 𝑤𝑤0.  If the model starts with 𝑣𝑣 = 0 and u small everywhere, then the system will tend to stay 216 

with 𝑣𝑣 = 0.  However, if initially, u is sufficiently large somewhere, then some u will switch to 217 
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v. As the subpopulation with density v gets concentrated near 𝜇𝜇, the switching rate might then 218 

favor further increase in v and further concentrate the population near 𝜇𝜇. Modifying the 219 

movement mechanism to include actual aggregation on the density of conspecifics 220 

might produce a more concentrated population density on a smaller home range, but it is not 221 

clear that it can produce home ranging behavior in the absence of other movement components. 222 

Scenario 2: Switching Depends on Resource Density.  Here, consumers change their movement 223 

behavior as a function of the density of resources instantaneously available at their immediate 224 

location. This kind of temporal tracking of resource density is at the heart of the marginal value 225 

theorem from optimal foraging theory (e.g., Charnov 1976, McNair 1982), but in that case 226 

(unlike here) such temporal tracking is tied to globally omniscient knowledge of resource 227 

conditions elsewhere. Assuming a threshold resource density, 𝑚𝑚0, to which the consumers 228 

respond by switching their movement mode, we write 229 

𝛼𝛼𝑆𝑆2(𝑥𝑥, 𝑡𝑡) = �  𝑠𝑠                 if  𝑚𝑚(𝑥𝑥, 𝑡𝑡) > 𝑚𝑚0
  0                 if  𝑚𝑚(𝑥𝑥, 𝑡𝑡) ≤ 𝑚𝑚0      ,                                      (6) 230 

which means that consumers will switch from random search mode to range resident mode at 231 

rate 𝑠𝑠 if the resource density and position x and time t exceeds a threshold value,  𝑚𝑚0, and will 232 

otherwise remain in random search mode.  Similarly, 233 

𝛽𝛽𝑆𝑆2(𝑥𝑥, 𝑡𝑡) = �  0                   if   𝑚𝑚(𝑥𝑥, 𝑡𝑡) > 𝑚𝑚0
  𝑠𝑠                   if   𝑚𝑚(𝑥𝑥, 𝑡𝑡) ≤ 𝑚𝑚0       ,                                      (7) 234 

such that consumers will switch from range residency to random search mode at rate 𝑠𝑠 as 235 

resource availability deteriorates below the threshold density. Note that the structure of 236 

Equations (6-7) effectively creates an aggregative response to areas of abundant resources. 237 

Scenario 3: Switching Depends on Spatial Changes in Resource Density.  Whereas Scenario 2 238 

focused on resource density per se, in this scenario, consumers change their movement behavior 239 
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as a function of the magnitude of the spatial gradient in the resources available, �𝜕𝜕𝑟𝑟(𝑥𝑥,𝑡𝑡)𝜕𝜕𝑥𝑥 �. We 240 

write 241 

𝛼𝛼𝑆𝑆3(𝑥𝑥, 𝑡𝑡) = �𝑠𝑠                    if       �𝜕𝜕𝑟𝑟(𝑥𝑥,𝑡𝑡)𝜕𝜕𝑥𝑥 �  > 𝜑𝜑0
0                    if      �𝜕𝜕𝑟𝑟(𝑥𝑥,𝑡𝑡)𝜕𝜕𝑥𝑥 �  ≤ 𝜑𝜑0       ,                                      (8) 242 

where the rate of switching is 𝑠𝑠 if the spatial gradient in resource availability is greater than the 243 

threshold magnitude 𝜑𝜑0, and zero otherwise. Similarly, 244 

𝛽𝛽𝑆𝑆3(𝑥𝑥, 𝑡𝑡) = �0                    if       �𝜕𝜕𝑟𝑟(𝑥𝑥,𝑡𝑡)𝜕𝜕𝑥𝑥 �  > 𝜑𝜑0𝑠𝑠                    if       �𝜕𝜕𝑟𝑟(𝑥𝑥,𝑡𝑡)𝜕𝜕𝑥𝑥 �  ≤ 𝜑𝜑0       ,                                      (9) 245 

such that consumers will switch from range residency to random search mode at rate 𝑠𝑠 as the 246 

spatial gradient in resource availability weakens.  247 

Scenario 4: Switching Depends on Perceived Spatial Changes in Resource Density. Here, 248 

consumers again change their movement behavior as a function of the spatial gradient in the 249 

resources available, but we augment their perceptual abilities to detect those spatial gradients.  250 

Specifically, we assume that the consumers possess a perceptual range, R (Zollner and Lima 251 

1997, Mech and Zollner 2002, Fagan et al. 2017).  Thus, for a distance |x - y| from position x the 252 

consumers can perceive the existence of resources according to a detection function 253 

𝑔𝑔(𝑥𝑥,𝑦𝑦,𝑅𝑅) = �1 −𝑅𝑅 ≤ 𝑥𝑥 − 𝑦𝑦 ≤ 𝑅𝑅
0 𝑒𝑒𝑒𝑒𝑠𝑠𝑒𝑒              .                         (10) 254 

The perceived resource function, ℎ(𝑥𝑥), is then written  255 

ℎ(𝑥𝑥, 𝑡𝑡) =
1

2𝑅𝑅 � 𝑚𝑚(𝑦𝑦, 𝑡𝑡)�����𝑟𝑟𝜕𝜕𝑟𝑟𝑠𝑠𝑙𝑙𝑟𝑟𝑎𝑎𝑙𝑙𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠𝑟𝑟𝜕𝜕𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑔𝑔(𝑥𝑥,𝑦𝑦,𝑅𝑅)�������𝑟𝑟𝑠𝑠𝑡𝑡𝑠𝑠𝑠𝑠𝑡𝑡𝑠𝑠𝑟𝑟𝑟𝑟𝑓𝑓𝜕𝜕𝑟𝑟𝑠𝑠𝑡𝑡𝑠𝑠𝑟𝑟𝑟𝑟 𝑑𝑑𝑦𝑦𝑥𝑥+𝑅𝑅
𝑥𝑥−𝑅𝑅  256 

which in the case of 𝑔𝑔(𝑥𝑥, 𝑦𝑦,𝑅𝑅) from Eq. 10 simplifies to 257 
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ℎ(𝑥𝑥, 𝑡𝑡) =
12𝑅𝑅 ∫ 𝑚𝑚(𝑦𝑦, 𝑡𝑡)𝑑𝑑𝑦𝑦𝑥𝑥+𝑅𝑅𝑥𝑥−𝑅𝑅                                                           (11) 258 

We make these choices of 𝑔𝑔(𝑥𝑥,𝑦𝑦,𝑅𝑅) and ℎ(𝑥𝑥) to simplify comparisons with the other scenarios 259 

developed in this paper. The consequences of choosing different functional forms for 𝑔𝑔(𝑥𝑥,𝑦𝑦,𝑅𝑅) 260 

are explored extensively in Fagan et al. (2017). 261 

To model the effects of switching movement modes as a function of perceived spatial resource 262 

gradients, we write 263 

𝛼𝛼𝑆𝑆4(𝑥𝑥, 𝑡𝑡) = �𝑠𝑠                   if       �𝜕𝜕ℎ(𝑥𝑥,𝑡𝑡)𝜕𝜕𝑥𝑥 �  > 𝜑𝜑0
0                   if       �𝜕𝜕ℎ(𝑥𝑥,𝑡𝑡)𝜕𝜕𝑥𝑥 �  ≤ 𝜑𝜑0      ,                                      (12) 264 

where the rate of switching is 𝑠𝑠 if the spatial gradient in resource availability is greater than the 265 

threshold magnitude 𝜑𝜑0, and zero otherwise. Similarly, 266 

𝛽𝛽𝑆𝑆4(𝑥𝑥, 𝑡𝑡) = �0                    if       �𝜕𝜕ℎ(𝑥𝑥,𝑡𝑡)𝜕𝜕𝑥𝑥 �  > 𝜑𝜑0𝑠𝑠                    if        �𝜕𝜕ℎ(𝑥𝑥,𝑡𝑡)𝜕𝜕𝑥𝑥 �  ≤ 𝜑𝜑0      ,                                      (13) 267 

such that consumers will switch from range residency to random search mode at rate 𝑠𝑠 when the 268 

spatial gradient in resource availability is sufficiently weak.  Note that because of our choices of 269 𝑔𝑔(𝑥𝑥,𝑦𝑦,𝑅𝑅) and ℎ(𝑥𝑥, 𝑡𝑡) in Eqs. 10-11 we can use the same threshold magnitude, 𝜑𝜑0, in Eqs. 12-13 270 

as in Scenario 3 (Eqs. 8-9). 271 

Scenario 5: Switching Depends on Temporal Changes in Resource Density.  In this penultimate 272 

scenario, we depart from the previous two scenarios that focused on reaction to spatial gradients, 273 

and instead assume that the consumers have some modest ability to detect and respond to 274 

temporal changes in resource density at their specific spatial location (e.g., Loiselle and Blake 275 

1991, Dusenberry 1998).  The assumptions in this scenario of our model mean that  consumers 276 

are able to identify whether their access to immediately local resources is instantaneously getting 277 

better or worse, but they have no knowledge of long-term trends in resource availability nor any 278 
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information about trends beyond their current location. Mathematically, we can write this 279 

detection of immediate trends in terms of the temporal gradient of the resource, 
𝜕𝜕𝑟𝑟𝜕𝜕𝑡𝑡 , such that 280 

𝛼𝛼𝑆𝑆5(𝑥𝑥, 𝑡𝑡) = �𝑠𝑠                   if       
𝜕𝜕𝑟𝑟(𝑥𝑥,𝑡𝑡)𝜕𝜕𝑡𝑡  > 𝛿𝛿0

0                   if       
𝜕𝜕𝑟𝑟(𝑥𝑥,𝑡𝑡)𝜕𝜕𝑡𝑡  ≤ 𝛿𝛿0      ,                                      (14) 281 

where the rate of switching is 𝑠𝑠 if the temporal gradient in resource availability is greater than the 282 

threshold magnitude 𝛿𝛿0, and zero otherwise. This means that the consumers only switch from 283 

random search mode into range resident mode if resource density is improving sufficiently 284 

quickly. Note that we must use a different threshold, 𝛿𝛿0, and not 𝜑𝜑0, because we are dealing with 285 

a temporal rather than a spatial gradient in resource density. However, because of our choices of 286 𝑚𝑚(𝑥𝑥, 𝑡𝑡) and 𝑔𝑔(𝑥𝑥, 𝑡𝑡), we can, under some circumstances, use the same magnitude for these 287 

thresholds and just allow the dimensional units to differ. More specifically, because the resource 288 

equation for  𝑚𝑚(𝑥𝑥, 𝑡𝑡) (and by extension for ℎ(𝑥𝑥, 𝑡𝑡)) has a natural time scale of 4 π / ω and a 289 

natural spatial scale of σ built into it  (Eq. 1), we can equate the thresholds 𝛿𝛿0 and 𝜑𝜑0 if we 290 

equate the magnitudes of the two intrinsic scales. With different choices for these intrinsic scales, 291 

we can make the same transition from spatial to temporal gradients with a rescaling coefficient.    292 

Scenario 6: Switching Depends on Consumers’ Memory of Resource Density.  Here, we assume 293 

that the consumers possess a simple, but spatially detailed form of memory that allows them to 294 

keep track of the long-term resource dynamics of an area. If we were building models of 295 

movement trajectories for individual animals, we would want to structure each consumer’s 296 

memory around the resources encountered along those trajectories (Schlaegel and Lewis 2014, 297 

Bracis et al. 2015, Abrahms et al. 2019, Lin et al. 2020). However, because we are working 298 

within a PDE modeling framework, and need to characterize the collective memory of a group of 299 

organisms, we need a different approach.  300 
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To do this, we consider a situation in which the consumers base their decisions to switch 301 

between movement modes on how much they can remember of the resource cycle and where 302 

they are within that cycle. From Equation (1), the temporally dynamic resource has period 1 𝜔𝜔�  303 

and repeats endlessly for any given spatial location. We use the parameter 𝑄𝑄, where 𝑄𝑄 ≤ 1 𝜔𝜔�  , to 304 

represent the memory length, i.e., 𝑄𝑄𝜔𝜔 is the proportion of the full resource cycle that the 305 

consumers can remember. The consumers’ memory, 𝑀𝑀, of the resource conditions leading up to 306 

time t can thus be written 307 𝑀𝑀 =
∫ 𝑟𝑟(𝑥𝑥,𝑡𝑡)𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡−𝑄𝑄 𝑄𝑄    .                                                (16) 308 

Note that a given value of 𝑄𝑄 will yield a different memory depending on what point in the 309 

resource cycle the system is in. We then base the movement switching rates on this memory by 310 

writing 311 

𝛼𝛼𝑆𝑆6(𝑥𝑥, 𝑡𝑡) = �𝑠𝑠                   if       𝑀𝑀 > 𝑀𝑀0
0                   if       𝑀𝑀 ≤ 𝑀𝑀0      ,                                      (17) 312 

where the rate of switching is 𝑠𝑠 if the consumers’ memory of resource availability at location x 313 

exceeds the threshold magnitude 𝑀𝑀0, and zero otherwise. This means that the consumers only 314 

switch from random search mode into range resident mode if their memory of a location, at a 315 

particular time, is sufficiently positive. Similarly, 316 

𝛽𝛽𝑆𝑆6(𝑥𝑥, 𝑡𝑡) = �0                    if       𝑀𝑀 > 𝑀𝑀0𝑠𝑠                    if        𝑀𝑀 ≤ 𝑀𝑀0      ,                                      (18) 317 

such that consumers switch from range-resident mode into random search mode if their memory 318 

of a location, at a particular time, is sufficiently unfavorable, but remain in range resident mode 319 

otherwise.    320 

Summary of Modeling Effort 321 
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Table 1 provides a summary of the different scenarios and the functions and parameters 322 

involved. 323 

 324 

Table 1. Summary of the six modeling scenarios and a listing of functions and parameters. 325 

Scenarios are listed in a 2 x 3 array that matches the presentation style of figures in Results. 326 

Entries are to be read as “Switching depends on …”. 327 

Scenario Summary 

Scenario 1 

… conspecific density 

Scenario 2 

… resource density 

Scenario 3 

… spatial gradient of resource 

Scenario 4 

… perceived spatial gradient of resource 

Scenario 5 

…temporal gradient of resource 

Scenario 6 

… memory of resource 
 

Function Summary  𝑚𝑚(𝑥𝑥, 𝑡𝑡) Spatiotemporal distribution of resources 𝑣𝑣(𝑥𝑥, 𝑡𝑡) Population density engaged in diffusive movement 𝑢𝑢(𝑥𝑥, 𝑡𝑡) Population density engaged in range-resident movement 𝛼𝛼(𝑥𝑥, 𝑡𝑡) Rate of switching from diffusive to range-resident movement 𝛽𝛽(𝑥𝑥, 𝑡𝑡) Rate of switching from range-resident to diffusive movement 𝑔𝑔(𝑥𝑥,𝑦𝑦,𝑅𝑅) Resource detection function for foragers with perceptual range R 𝑚𝑚(𝑥𝑥, 𝑡𝑡) Perceived spatiotemporal distribution of resources 

Parameter Summary  

µ Mean of the Gaussian resource pulse  

σ Standard deviation of the Gaussian resource pulse 𝜔𝜔 Temporal frequency of the Gaussian resource pulse 

D Diffusion rate 𝜀𝜀 Small background rate of random movement in range-resident movement mode 𝜃𝜃 Rate of home-ranging (mean-reverting) movement 𝑠𝑠 Rate of switching between diffusive and range-resident movement modes 
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𝑤𝑤0 Threshold forager density determining whether switching of movement modes 

occurs in Scenario 1 𝑚𝑚0 Threshold resource density determining whether switching of movement modes 

occurs in Scenario 2 𝜑𝜑0 Threshold resource gradient determining whether switching of movement 

modes occurs in Scenarios 3 and 4 𝛿𝛿0 Threshold temporal resource gradient determining whether switching of 

movement modes occurs in Scenario 5 𝑀𝑀0 Threshold memory of available resources determining whether switching of 

movement modes occurs in Scenario 6 

R Perceptual range in Scenario 4 

M Integrated memory of resources in Scenario 6 

Q Memory duration in Scenario 6 Ω Degree of spatiotemporal matching between foragers and their resources 

 328 

Quantifying Foraging Success  To quantify the consumers’ ability to track the distribution of 329 

their resources over space and time, we use the continuous form of the Bhattacharyya Coefficient 330 

(BC; Bhattacharyya 1943) for quantifying the overlap between two distributions. Because the 331 

BC was initially formulated for use with probability distributions, we use a normalized form. 332 

Specifically, we have 333 Ω =
∫ ∫ �[𝜕𝜕(𝑥𝑥,𝑡𝑡)+𝜕𝜕(𝑥𝑥,𝑡𝑡)]𝑟𝑟(𝑥𝑥,𝑡𝑡)

1000𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡′ 𝑟𝑟𝑥𝑥𝑟𝑟𝑡𝑡�∫ ∫ [𝜕𝜕(𝑥𝑥,𝑡𝑡)+𝜕𝜕(𝑥𝑥,𝑡𝑡)]𝑟𝑟𝑥𝑥𝑟𝑟𝑡𝑡1000𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡′ �∫ ∫ 𝑟𝑟(𝑥𝑥,𝑡𝑡)
1000𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡′ 𝑟𝑟𝑥𝑥𝑟𝑟𝑡𝑡  ≤ 1  .  (19) 334 

The timeframe t’ to tmax represents some period after transient behaviors have settled down.  335 

For static resource distributions, which (with appropriate boundary conditions of mass 336 

conservation) always exhibit an equilibrium solution, the integral is only over space (Fagan et 337 

al. 2020).  For dynamic landscapes, such as periodically fluctuating landscapes on which we 338 

focus, the time integral needs to be taken over a long enough period to discount the transient 339 
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behaviors and instead capture long-term variation (Fagan et al. 2017).  This metric of foraging 340 

success differs a bit from that used in Fagan et al. (2017, 2020), but the change is necessary to 341 

accommodate comparison across all six of the scenarios we consider here. 342 

Equation (19) quantifies ‘resource matching’ in the sense that foragers must spatially and 343 

temporally overlap with resources to be successful.  We do not consider mutual interference or 344 

resource depletion because we want to focus only on animal movement behavior and not 345 

population growth or decay. This is a reasonable assumption when population density is low 346 

(i.e., sparsely populated regions) and resources are ephemeral (i.e., resources degrade before 347 

their density can be reduced much by the foragers). In these systems, the question is more about 348 

capitalizing on transient resources, as opposed to avoiding competition.  Such transient resource 349 

dynamics characterize, for example, the Eastern steppes of Mongolia that have motivated much 350 

earlier work on animal movement (Mueller and Fagan 2008, Mueller et al. 2011, Martínez-351 

Garcia et al. 2013, Fleming et al. 2014).  352 

Throughout, we solved the initial-boundary value problem numerically using the method 353 

of lines by discretizing in space over the domain x = [0, 100] and solving the system of ordinary 354 

differential equations in time. We implemented a different scheme for the components of Eq. 2 355 

as required by their respective structure. For example, for the random search equation, we used a 356 

simple forward-time, centered-space scheme, whereas for the gradient following equation, we 357 

used the Lax-Wendroff method, accounting for the method’s natural dispersion error in the term 358 𝜀𝜀 𝜕𝜕2𝜕𝜕𝑥𝑥2 𝑣𝑣. To solve the resulting coupled system of ODEs, we used the variable-step, variable-order 359 

differential algebraic equation solver ODE15S (Shampine and Reichalt, 1997). 360 



19 

 

For initial conditions, all the numerical experiments had u and v distributed uniformly 361 

with population density 1 / L. Thus, at any time the total population u + v would integrate to 2 362 

over space, while the total population in the individual u and v components varied with time.  We 363 

used zero flux boundary conditions on the rectangular domain (x, t) ∈ [0, 100] × [0,∞). For all of 364 

the simulations, we considered the pulsed Gaussian resource function detailed in Eq. 1.  365 

RESULTS 366 

Figure 1 shows the dynamic (pulsed Gaussian) resource landscapes on which the forager 367 

populations are moving. In both the single patch and two patch landscapes, resources are highly 368 

transient but are predictable with regard to their location and timing.  369 

Figure 1. Heatmaps of the resource landscapes with one (left) and two (right) seasonally pulsed 371 

Gaussian resource peaks. Note that the variations in the resources are sufficiently intense that the 372 

resource density drops to near zero during the troughs between the resource peaks. Parameters: L 373 

= 100, µ = 50 , µ1 = 33.3, µ2 = 66.6, σ  = 5.5 , ω = 0.2 . 374 

 375 

The six advection scenarios involve starkly different locations and times at which the 376 

consumers are switching from the diffusive foraging mode to the home ranging mode (Figure 2). 377 

For example, in Scenario 1, switching into the home ranging mode is constant after the 378 
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population equilibrates, with no influence from the underlying periodicity in resource 379 

availability. In contrast, the resource conditions that favor switching to home ranging are 380 

strongest at the time and location of the resource peak in Scenario 2 (tracking the resource 381 

density, Fig. 2 b) whereas the resource conditions that favor switching are strongest on the 382 

‘shoulders’ of the resource peak in Scenarios 3 and 4 (tracking changes and perceived spatial 383 

changes in resource density, respectively) (Fig. 2c,d).  Provided R in Equation 10 (perception 384 

scenario) is sufficiently small, the resource conditions favoring switching regions for scenario 4 385 

are nearly identical to those of scenario 3 for low R (Supp. Fig. F). Different still are the resource 386 

conditions that promote the switching behavior in Scenario 5 (tracking temporal changes in 387 

resource density) where the switching behavior is greatest as the resource begins to increase in 388 

density (Fig. 2e). Provided Q in Eq. 16 (memory scenario) is sufficiently large, resource 389 

conditions will lead to some portion of the consumer population constantly switching into the 390 

diffusive foraging mode regardless of what part of the seasonal cycle the system is in (Fig. 2f).  391 

In contrast, for sufficiently small Q, the resource conditions promoting this constancy of 392 

switching disappears and the results from Scenario 6 converge on those from Scenario 2 (Supp. 393 

Fig. G).   Resource conditions that promote switching from home ranging to diffusive foraging 394 

mode are largely complementary to these results for all six scenarios for switching from diffusive 395 

to home ranging. 396 
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 398 

Figure 2. Location and timing of the resource conditions that promote the consumer population 399 

actively switching into home ranging mode for the landscape with a single resource patch (see 400 

Fig. 1a). Note how the intensity of the resource conditions that promote switching behavior as 401 

well as the timing and location of those favorable locations vary strongly depending on how the 402 

gradient of the resource is defined (labeled as scenarios 1 – 6). Fixed parameters: θ  = 0.01, D = 403 

0.1; Scenario 1: θ  = 0.01, D = 0.1, w0 = 0.01; Scenario 2:  m0 = 0.035; Scenario 3: ϕ0 = 0.0037; 404 

Scenario 4: ϕ0 = 0.0018, R = 10; Scenario 5: δ0 = 0.0014, Scenario 6: M0 = 0.02, Q = 20.9. 405 

 406 

The differences in switching behavior among Scenarios alter the consumers’ movement 407 

behaviors and thus translate into differences in the location and timing of the consumer 408 

population densities. Scenario 1 (tracking conspecific density) shows a concentration of 409 

consumers to the location of the resource peak regardless of whether the resource is at high or 410 

low density. In contrast, Scenario 2 (tracking resource density) shows periodicity in the 411 

consumer population density, indicating a degree of matching of the consumers to both the 412 

location and timing of the resource peak. Scenario 3 (tracking spatial changes in resource 413 

density) shows the consumers concentrating on the shoulders of the resource peak, but not on the 414 

resource peak itself. In contrast, scenario 4 (tracking perceived spatial changes in resource 415 

density) shows advection occurring over a much broader area. In scenarios 5 (tracking temporal 416 
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changes in resource density) and 6 (memory), the density of the advecting consumers is greatest 417 

on the resource peak. Both of these scenarios also feature a limited degree of oscillation in 418 

population density that mirrors the temporally dynamic nature of the resources.  Supplementary 419 

Figure A provides the corresponding densities for the diffusive component of the populations.  420 

 421 

 423 

Figure 3. Densities of the home ranging component of the consumer population across the six 424 

switching scenarios for the landscape with a single resource peak. Scenarios differ with regard to 425 

both the timing and location of the density of the portion of the consumer population that is in 426 

the home ranging mode. Note that densities fluctuate strongly in time in Scenarios 2 and 3.  Note 427 

also that densities are concentrated on the ‘shoulders’ of the resource distribution in Scenario 3 428 

and over a much broader area in Scenario 4.  Fixed parameters: θ  = 0.01, D = 0.1; Scenario 1:  429 

w0 = 0.01; Scenario 2:  m0 = 0.035; Scenario 3: ϕ0 = 0.0037; Scenario 4: ϕ0 = 0.0018, R = 10; 430 

Scenario 5: δ0 = - 0.0014, in Scenario 6 M0 = 0.02, Q = 20.9.     431 

 432 

In the case of a single resource patch, considerable differences exist in Ω across 433 

scenarios, indicating that the different movement strategies allow for very different degrees of 434 

resource matching. Resource matching success (Ω) is clearly greatest in Scenario 5 where 435 

switching between diffusive and home ranging movement types depends on the temporal 436 

resource gradient, but only when the threshold for switching between movement behaviors is 437 
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very small (Figure 4). Peak Ω values (broad to concentrated in parametric extent) exist within 438 

each scenario, and the location of these Ω peaks differs across scenarios.  Collectively, these 439 

results indicate that, within a given movement strategy, resource matching could potentially be 440 

optimized, but that the degree of switching and the switching thresholds that are necessary to 441 

provide optimal matching differs among scenarios.  For example, in Figure 4, low levels of 442 

switching provide marginally better resource matching in Scenarios 1 and 2, but switching needs 443 

to occur at a faster rate when it occurs in conjunction with temporal resource gradients (Scenario 444 

5). 445 

 446 

  448 

Figure 4. Resource matching success (Ω) for foragers in a landscape with a single periodic 449 

resource peak. Results for all scenarios are plotted as functions of switching rates (x axes) and 450 

scenario-specific parameters (y-axes). Fixed parameters  θ  = 0.01, D = 0.1: Scenario 4:  R=10; 451 

Scenario 6: Q=20.9. 452 

 453 

 454 
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In the case of two resource patches, the location and timing of the consumer population 455 

switching into home ranging mode becomes more complicated, reflecting the greater complexity 456 

of the resource conditions favoring such changes in behavior (Figure 5).  The timing and location 457 

of such switching vary strongly across scenarios depending how the gradient of the resource is 458 

defined. For example, switching to advection is consistently concentrated in the vicinity of the 459 

resource peaks in Scenario 1 even though the resource is periodic in time. Switching to advection 460 

occurs on the ‘shoulders’ of the double-peaked resource distributions in Scenarios 3 and 4, but 461 

occurs in the vicinity of, but in advance of, the resource peaks in Scenario 5 (excluding only the 462 

spatiotemporal region where the resource is most strongly waning in abundance).  In Scenario 6, 463 

switching to advection again reflects the periodic nature of the resource, but, due to the effects of 464 

memory, there exists a lingering degree of switching near the centers of the resource peaks even 465 

though the resources are least abundant at these times (Figure 5). Density plots for the 466 

component of the consumer population in the home ranging mode appear in Supplementary 467 

Figure B.  A counterpart to Figure 5 that shows the location and timing of the population 468 

switching from foraging mode into diffusive mode appears in Supplementary Figure C.   469 

 470 
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Figure 5. Location and timing of the consumer population switching into home ranging foraging 472 

mode for the landscape with two in-phase resource peaks (see Fig. 1b). Compare results with 473 

Figure 2. Fixed parameters: θ  = 0.01, D = 0.1; Scenario 1:  w0 = 0.01; Scenario 2:  m0 = 0.035; 474 

Scenario 3: ϕ0 = 0.0037; Scenario 4: ϕ0 = 0.0018, R = 10; Scenario 5: δ0 = 0.0014; Scenario 6 M0 475 

= 0.02, Q = 20.9.     476 

 477 

  Compared to Figure 4, resource matching success is generally higher in the two patch 478 

case because the resources are better distributed within the landscape and easier to find with a 479 

given level of mobility (Figure 6). This is especially true for Scenario 3 (spatial gradient) and 480 

Scenario 4 (spatial gradient with non-local perception) where resource matching success is now 481 

on par with the best performing parameters from Scenario 5 (following a temporal resource 482 

gradient). High levels of switching between diffusion and advection are generally deleterious 483 

unless the thresholds for undertaking such switches are sufficiently high.  The thresholds at 484 

which optimal resource matching is reached tend to be higher in this two resource patch case 485 

than in the single resource patch.  486 
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Figure 6.  Resource matching in the case of two in-phase resource patches. Compare results with 488 

Figure 4. Fixed parameters  θ  = 0.01, D = 0.1: Scenario 4:  R=10; Scenario 6: Q=20.9. 489 

 490 

The home ranging parameter, θ, also influences the degree of resource matching success. 491 

Supplementary Figure D gives resource matching success in the case of one resource path 492 

(comparable to Figure 4), except that θ is increased and, separately, decreased from the baseline 493 

level.  For a fixed rate of diffusion, increasing θ affords greater resource matching success for 494 

almost all scenarios and decreasing θ has the opposite effect. Scenario 1 (advection on 495 

conspecifics) clearly differs in that increasing θ leads to a decrease in resource matching.  For the 496 

case of two resource peaks (Supp. Figure E, compare with Fig. 6), θ has a different effect in that 497 

increasing the degree of home ranging tends to decrease Ω, at least somewhat, except in 498 

Scenarios 3 and 4. In these scenarios, where the behavioral switching depends upon a form of 499 

spatial resource gradient, resource matching clearly increases with increasing θ.   500 
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Perceptual range (R) plays an important role in the degree of resource matching success 501 

afforded by Scenario 4 by shifting the timing and location of the behavioral switching into the 502 

home ranging mode (Supplementary Figure F).  For sufficiently small R, results from Scenario 4 503 

converge on those of Scenario 3. For sufficiently large R, the switching regions become more 504 

refined as the organisms’ increased perceptual radius affords more information on the full 505 

distribution of resources across the domain and the ideal times and locations to switch behaviors. 506 

Note that for R=15, which is exactly half the distance between the centers of the two resource 507 

pulses, the switching regions turn on and off centered at x = 50 (Supplementary Figure F).   508 

    Likewise, the duration of memory in Scenario 6 can also influence the timing and 509 

location of behavioral switching (Supplementary Figure G). As memory duration, Q, increases, 510 

the lingering effects of memory tend to link the switching responses to consecutive resource 511 

peaks so that switching to advection occurs in a consistent location, even though the underlying 512 

resource is periodic in time. For sufficiently small Q, switching behavior of Scenario 6 converges 513 

on that of Scenario 2.   514 

DISCUSSION 515 

This synthetic overview makes clear that the ecological concept of ‘consumers tracking 516 

resource gradients’ can mean very different things in practice when implemented in movement 517 

models with continuous space. Furthermore, the detailed assumptions of how consumers actually 518 

track their resources can translate into radically different levels of success for consumers 519 

attempting to match the spatiotemporal distributions of their resources.  520 

Overall, we found that Scenarios 3 (tracking spatial gradients), 4 (tracking spatial 521 

gradients with the benefit of non-local perception), and 5 (tracking temporal gradients) provided 522 

the highest level of resource matching for consumers.  To some extent these advantages may 523 
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change with the distribution of resources. For example, if one considers a resource distribution 524 

function which is very flat around its global maximum point but peaked around a local maximum 525 

point, Scenario 3 would likely provide very poor resource matching levels. In this scenario, 526 

tracking perceived spatial gradients (Scenario 4) should perform better than tracking the 527 

immediately local gradients (Scenario 3).  Results in Fagan et al. (2020), where we considered 528 

step functions for the resources, support this contention.  Perception (Scenario 4) afforded good 529 

resource matching success, comparable to the highest levels of resource matching that were 530 

obtained through Scenario 5 (tracking temporal gradients).  The utility of perception, which was 531 

especially true in more complex two patch resource landscapes, is in line with earlier studies 532 

suggesting the benefits of non-local information gathering in temporally variable resource 533 

landscapes (Fagan et al. 2017).   534 

The general superiority of Scenario 5 (tracking temporal gradients) may be, in part, due 535 

to the mathematical model of movement that we explored. For example, because  μ , the spatial 536 

location of resources, is built into the range-resident dispersal mode, there is spatial information 537 

built into that mode, but no temporal information.  Then, adding temporal information via 538 

tracking of temporal gradients (Scenario 5) would add relatively more to an organism's overall 539 

information about the environment than using additional spatial information, because there is 540 

already some spatial information implicitly available in the OU mode.   The observation that 541 

Scenarios 3 and 4, especially 4, perform relatively better when there are two resource patches 542 

than where there is only one supports this argument, because with two resource locations getting 543 

extra spatial information might be more valuable.   544 

In contrast to the more successful strategies (Scenarios 3, 4, and 5), other scenarios 545 

involving tracking the density of conspecifics (Scenario 1), tracking the abundance (rather than 546 
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the gradient) of resources (Scenario 2), or employing a particular form of memory (Scenario 6) 547 

provided poorer spatiotemporal matches to resources.  Consumers that switched their foraging 548 

behavior as a function of conspecific densities generally achieved very poor resource-matching 549 

success. The effect was especially pronounced when home ranging behavior was strong, which 550 

limited the consumers’ spatial exploration.   These results suggest that pure ‘local enhancement’ 551 

type mechanisms (Buckley 1997) wherein consumers aggregate in areas where others of their 552 

kind are already foraging cannot succeed in isolation. Instead, a modest level of directly tracking 553 

the resources themselves, together with cueing in on conspecific activity, would likely improve 554 

this strategy. This modification would also connect to the producer – scrounger dichotomy in 555 

studies of social group foraging behavior (Beauchamp 2000), wherein ‘producers’ behave 556 

directly according to resources but ‘scroungers’ base their decisions on producers. 557 

Increasing evidence suggests that memory is important for consumers that must acquire 558 

resources in highly dynamic landscapes (Bracis and Mueller 2017, Abrahms et al. 2020). 559 

Consequently, we were surprised to see that memory-based movement also provided some of the 560 

worst tracking of available resources.   This deviation from expectations may stem from the 561 

particular (rather crude) form of memory that we implemented in Scenario 6. Indeed, other 562 

modeling work that considered memory at the individual (rather than collective) level, found that 563 

a rather sophisticated form of memory, including separate long- and short-term memory records, 564 

was necessary to track resources in dynamic landscapes (Lin et al. 2021). 565 

Collectively, these results suggest that tracking gradients (Scenarios 3, 4, and 5) may, in 566 

general, be more effective than tracking resource density directly (Scenario 2) or indirectly 567 

(Scenario 1).  One plausible reason for this is that gradients should be detectable over a broader 568 

range of conditions than density per se.  This would accord with the underlying biology.  569 
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Consider that, in practice, it would often be easier to assess the gradient of something than its 570 

magnitude.  For example, discerning whether movement was up or down a hill would likely be 571 

easier than identifying the elevation.  Such differential identifiability of gradients versus 572 

magnitudes would likely hinge on the rate of movement relative to the scale of the gradient. 573 

Intriguingly, the different scenarios for switching between home ranging and diffusive 574 

movement did not rank consistently with regard to the level of resource matching that they 575 

afforded. Even something as simple as switching from a model with a single periodic resource 576 

peak to one with two periodic resource peaks changed the relative performance of the different 577 

scenarios for switching between home ranging and random movement (compare Figures 4 and 578 

6). These differences appear to arise, primarily, because changing the number of resource peaks 579 

changes the average location of resources relative to consumers with specific levels of mobility.   580 

The degree to which consumers incorporate range-resident behavior in their movement 581 

also played an important role in determining how well they overlap the distribution of their 582 

resources in space and time.  In particular, the strength of home ranging (relative to random 583 

dispersal) interacted with the behavioral cues for switching to shape resource overlap in a strong 584 

way. Switching based on spatial resource gradients (whether immediately local or perceived over 585 

a longer distance) provided particularly good matches to resource distributions when coupled 586 

with strong range-resident behavior. This result is intriguing given that a recent statistical 587 

analysis of home range behavior found that many animals’ movement patterns were well 588 

described by models that included elements of both diffusive and range-resident behavior 589 

(Noonan et al. 2019).  590 

The conditional similarities between Scenarios 3 and 4 (Supp. Fig. F), and separately, 591 

between Scenarios 2 and 6 (Supp. Fig. G), are due to their underlying mathematics. Specifically, 592 
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the switching functions in Scenarios 2 and 3 were based on a derivative, whereas in Scenarios 4 593 

and 6 the switching functions were based on a slope which approximated the respective 594 

derivative for low enough R or Q.  In contrast, for large values of R or Q, Scenarios 4 and 6 595 

departed strongly from Scenarios 3 and 2, respectively, demonstrating how the introduction of 596 

additional information caused different behavior by the home ranging component of the 597 

population (Supp. Figs. F and G).  This additional information may be either spatial (in the form 598 

of an increased perceptual range, Scenario 5) or temporal (in the form of a lingering memory, 599 

Scenario 6), but in either case the additional information altered the basis for the behavioral 600 

decision-making. 601 

Opportunities for optimal resource matching 602 

The existence of parameter regions featuring higher levels of resource matching success 603 

amidst a sea of lower-performing parameters (Figs. 4 and 6, Supp. Figs. D and E) suggests that, 604 

within a given movement strategy, resource matching could potentially be optimized. However, 605 

the rate of switching (between home ranging and diffusive movement modes) and the switching 606 

thresholds that are necessary to provide optimal resource matching differ quite strongly among 607 

scenarios.  For example, in Figure 4, low rates of switching provide marginally better resource 608 

matching in Scenarios 1 and 6, but switching needs to occur at a faster rate when it occurs in 609 

conjunction with temporal resource gradients if consumers are to achieve the highest levels of 610 

resource matching (Scenario 5). 611 

Although our study considered models with continuous space, the high levels of resource 612 

matching success observed in some scenarios brings to mind concepts like the marginal value 613 

theorem for optimal resource tracking (Charnov 1976, McNair 1982) and the ideal free 614 

distribution for optimal distribution of resources among consumers (Farnsworth and Beecham 615 
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1999, Křivan et al. 2008) that had their origins in patch-based models of consumers tracking 616 

resources. To our knowledge, there is nothing like the marginal value theorem in partial 617 

differential equation (PDE) models or other ecological models involving continuous space. 618 

However, there is a strong foundation for the ideal-free distribution in continuous space models 619 

(Arditi and Dacorogna 1988, Grunbaum 1988), and more recent PDE work demonstrates how 620 

certain kinds of resource tracking strategies can lead to an ideal free distribution of consumers 621 

(Cantrell et al. 2008, 2010).  Real world complications, such as perceptual constraints, can cause 622 

departures from an ideal free distribution (Abrahams 1986), but ‘approximately optimal’ 623 

solutions are possible even when underlying assumptions are violated (Griffen 2009, Street et al. 624 

2018).   625 

In general, optimal movement in heterogeneous landscapes requires that consumers 626 

consider both space and time (Arditi and Dacorogna 1988, Cantrell et al. 2021).  In this paper, 627 

Scenarios 2,3, and 4 consider space, 5 considers time, and 6 considers both space and time (but 628 

considers time, via memory, in a rather crude way).  However, all of these scenarios involve 629 

behaviors that are relatively simple, in that movement decisions are being made with respect to 630 

metrics observable by many animals. Of the switching cues we examined, that of Scenario 2 is 631 

closest to classical considerations of optimal foraging in patchy landscapes. From the marginal 632 

value theorem, we know that, for omniscient consumers, the best time to leave a patch is when 633 

the rate of resource uptake on that patch drops below the system-wide average (Charnov 1976). 634 

This criterion reflects elements present in both Scenarios 2 and 5. Scenario 2 is relevant because 635 

resource uptake should be proportional to the density of resources available. However, Scenario 636 

5, where the focus is the temporal rate of change of resource density, is also relevant in that the 637 

rate of change of available resources shapes the rate of resource uptake. For example, knowing 638 
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the rate of change in resource availability would offer consumers information on how much 639 

longer they have to gather resources.  This information could be far more valuable than just 640 

knowing what resources are available at an exact spatiotemporal location. These conceptual links 641 

to the marginal value theorem are particularly strong for cases where behavioral changes are 642 

framed in terms of optimal ‘giving up times’ (McNair 1982) or residence times (Turchin 1991). 643 

Overall, Scenario 5 afforded much better opportunities for resource overlap than did Scenario 2 644 

(Figures 4, 6, Supp. Figs. D, E). This result raises intriguing questions about optimal foraging in 645 

dynamic landscapes, including the possibility that consumers tracking both the rate of change in 646 

local conditions and their own rate of change of resource uptake may be especially adept at 647 

maximizing resource gain.  This will be explored in future work.  Additional future directions 648 

could include models that combine memory and perception together, or that combine local 649 

enhancement type strategies (Scenario 1) with gradient-following behavior.  650 

In summary, we compared the performance of alternative methods by which consumers 651 

can be reasonably said to be tracking gradients related to their resources.  Optimal resource 652 

matching is achievable via all six scenarios, at least to some degree.  Within most scenarios, a 653 

broad range of parameter values yields similarly high levels of resource matching success. Thus, 654 

even if consumers were channelized to possess particular resource tracking abilities and were 655 

unable to switch among scenarios, wide parametric regions of ‘nearly optimal’ resource 656 

matching success would provide a broad evolutionary target wherein good foraging success is 657 

obtainable even when the parameters cannot be fine-tuned. Such broad targets would be 658 

advantageous given the high degree of temporal resource variability that exists in natural systems 659 

(e.g., Abrahms et al. 2020).  660 

 661 

 662 
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 830 

Supplemental Figures. 831 

 833 

Supplementary Figure A.  Density plot of the diffusive component of the forager population in a 834 

landscape with a single, periodic resource peak.  Diffusion is utilized in very different ways 835 

across the six movement scenarios. For example, large portions of the population are diffusing in 836 

locations away from the resource peak in Scenarios 1 and 6.  Diffusion occurs concentrated near 837 

the resource peak in Scenarios 2 through 5, but in a strongly periodic fashion in Scenarios 2 and 838 

5. Fixed parameters: θ  = 0.01, D = 0.1; Scenario 1:  w0 = 0.01; Scenario 2:  m0 = 0.035; Scenario 839 

3: ϕ0 = 0.0037; Scenario 4: ϕ0 = 0.0018, R = 10; Scenario 5: δ0 = 0.0014; Scenario 6 M0 = 0.02, 840 

Q = 20.9.     841 

 842 



39 

 

Supplemental Figure B. Densities of the home ranging component of the population for a 844 

landscape with two in-phase resource patches. Compare with Figure 3 for the one resource patch 845 

case. Fixed parameters: θ  = 0.01, D = 0.1; Scenario 1:  w0 = 0.01; Scenario 2:  m0 = 0.035; 846 

Scenario 3: ϕ0 = 0.0037; Scenario 4: ϕ0 = 0.0018, R = 10; Scenario 5: δ0 = 0.0014, in Scenario 6 847 

M0 = 0.02, Q = 20.9.     848 

  849 
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Supplemental Figure C.  Locations and times when the home ranging component of the 851 

consumer population is actively switching into the diffusive foraging model for cases with two 852 

in-phase resource patches. Note that the blue and yellow portions of the plots are largely 853 

complementary to those in Fig. 2. However, in scenario 5 (panel e), the switching to diffusion 854 

takes place as the resource peak is waning not increasing. Fixed parameters: θ  = 0.01, D = 0.1; 855 

Scenario 1:  w0 = 0.01; Scenario 2:  m0 = 0.035; Scenario 3: ϕ0 = 0.0037; Scenario 4: ϕ0 = 856 

0.0018, R = 10; Scenario 5: δ0 = 0.0014; Scenario 6 M0 = 0.02, Q = 20.9.     857 

  858 
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Top: 859 

Bottom: 861 

Supplementary Figure D. Resource matching with a single resource peak. Fixed parameters: D = 0.1, θ = 863 

0.005 (top array), θ = 0.02 (bottom array).  864 

  865 
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Top: 866 

 Bottom: 868 

Supplementary Figure E. Resource matching with two in-phase resource peaks. Fixed parameters: D=0.1, 870 

θ = 0.005 (top array), θ = 0.02 (bottom array). 871 
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Supplemental Figure F. For the case of two in-phase resource patches, locations and times when 873 

the resource conditions in Scenario 4 favor the consumer population to actively switch from the 874 

diffusive foraging mode to the home ranging mode as a function of the perceptual range, R. To 875 

be clear, this plot is showing the locations where the switching is actually taking place, not the 876 

perceptual radii themselves.  Thus, based on very large perceptual radii, it turns out that the 877 

switching should only happen in selected small areas. Yellow: α = s, Blue: α = 0. Parameters: L 878 

= 100, µ = 33.3, µ = 66.6, ϕ0  = 0.001. 879 

 880 

 881 
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Supplemental Figure G. Portions of space-time when the consumer population in Scenario 6 is 883 

actively switching from the diffusive foraging mode to the home ranging mode as a function of 884 

memory length, Q, for the case of two in-phase resource patches. Yellow: α = s, Blue: α = 0.   885 

Parameters: L = 100, µ1 = 33.3, µ2 = 66.6, M0  = 0.01. 886 

 887 


