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Abstract. Most spatial inquiries seek to investigate causal questions
about spatial processes, but many quantitative spatial methods are de-
signed to identify correlations and spatial patterns. Studying the struc-
ture of associations that make up a spatial pattern can provide informa-
tion about what the process that generated that pattern is likely to be,
but it does not provide a means of testing any one explanation against
alternative explanations. Causal inference provides a set of approaches
to formally make comparisons between explanations. An opportunity ex-
ists to incorporate these techniques and spatialize the theory of cause in
GIScience by building on recent advances in computer science and statis-
tics. However, implementing causal inference in geography may require
a shift in the design of geographic information systems.
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1 Analytical methods in GIScience

In geographic information science (GIScience), a disconnect exists between the
desire to understand process and many of the quantitative methods we use to
study the world (13). Although subject to debate (14), the term “spatial pro-
cess” refers to the dynamics of a (spatial) system or the temporal trajectory
of spatial events. Spatial processes describe the mechanisms that generate spa-
tial phenomena (13), which makes understanding process central to the causal
explanations of spatial patterns.

For decades the discipline’s quantitative textbooks have presented a “pattern–
process” approach to inquiry. We observe a spatial pattern, analyze the structure
of associations between variables within that pattern, and use those associations
to make inferences about the processes that may have given rise to the pattern.
(1; 12; 32). When we employ this method of inquiry, what we often ultimately
wish to understand are the causal processes that produce the patterns we ob-
serve and the associations we measure. However, the associations we build our
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inferences on are necessary but insufficient conditions for identifying the process
responsible for the pattern because the same set of associations could be the
result of many different processes. Developing ways to specify, examine, commu-
nicate, and infer from a set of unobserved counterfactual processes that could
have given rise to a pattern we observe is one key to closing the gap between
our desire to understand process and our quantitative toolkit.

Recent advances in computer science and statistics have created an oppor-
tunity to bring the presentation and investigation of counterfactuals into GI-
Science and to enrich the pattern–process approach. Specifically, researchers in
these fields have coupled probability theory with first-order logic (see 4; 28) to
create a mathematical means of testing one set of proposed causal relationships
against another. These advances create an opportunity for GIScience to poten-
tially progress up the “ladder of causation” (Table 1) (35) from investigating
associations to studying interventions and/or counterfactuals. Causal inference
allows for queries to move beyond correlation by modeling interventions so re-
searchers may study their effects. However, direct interventions in geographic
systems are often difficult to study as we often cannot control geographic sys-
tems and face a range of confounding factors linked to the qualities of places
which cannot be easily modeled. We may be able to side step this challenge by
posing and investigating counterfactuals that explore what could or would have
happened if one aspect of the world was different.

Introducing these changes into geographic inquiry will require progress in at
least two areas (1) the further development of theories of spatial causal infer-
ence (Section 2) and (2) a reorganization of some of our most commonly used
computational and statistical tools (Section 3).

Table 1: Ladder of Causation (35).

Level Typical Question Definition

Association
P (y|x, z)

How does seeing x change my be-
lief in y?

I took an aspirin. Will I still have
a headache when I wake?

Intervention
P (yx|z)

How likely is it that y happens if
I fix x?

If I take an aspirin now, will I wake
up with a headache?

Counterfactual
P (yx|x′, y′, z)

Was it x that caused y, given that
we observed x′ and y′? What if I
acted differently?

I took an aspirin. My headache
is gone. Would I have a headache
had I not taken that aspirin?

Note: All the probability statements include z, which represents other variables that may
confound the relationship between x and y.
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2 Developing theories of spatial causal inference

Development of a formal theory of space and causal inference is still in its early
stages, and recent progress toward any such theory has been made indirectly
through the extension of causal models into the spatial domain (for reviews,
see (2; 31); for examples, see (15; 16; 19; 21; 22; 30; 31; 23)). However, ex-
tending existing models of causal inference into the spatial domain faces several
key challenges. First, geographic inquiries often rely on on observational data
because it is simply infeasible, or potentially unethical, to randomly intervene
the system under study. Second, spatial models may be confounded by unob-
served and unquantifiable location-specific phenomena. Third, observations in
space may interfere with each other. The second and third challenges are linked
to Anselin’s principle of spatial heterogeneity and Tobler’s First Law. Just as
these principles challenge the foundations of conventional statistics necessitat-
ing the development and use of spatial statistics (3; 32), they also challenge the
foundations of causal inference necessitating the development of frameworks for
spatial causal inference (20).

The principle of spatial heterogeneity implies that unobserved spatial effects
may confound inferences. Beyond those variables that can be measured, places
are made up of an amalgamation of minute, unquantifiable, and highly local qual-
ities. A perfect quantitative model of these phenomena is therefore prohibitively
difficult to construct. Instead, a formalism for acknowledging spatial confounding
and controlling for it in quantitative models would enable researchers to condi-
tion their inferences on these unobserved quantities, simultaneously quantifying
uncertainty and codifying their modeling assumptions. Then, software based on
this formalism could be developed to identify instances of spatial confounding
and (when present) automatically adjust inferences.

Tobler’s First Law states that spatially embedded objects tend to be more
related as they get nearer to each other. In causal inference, this manifests as
spatial interference: nearby units may influence each other’s responses to an in-
tervention. When present in models, spatial interference can lead to violations
of the stable unit treatment value assumption (SUTVA) of non-spatial causal
inference. SUTVA holds that that units (treated or untreated) will not affect
each other’s response to an intervention (18). In some spatial scenarios, this is
easily satisfied: consider a study about factory pollution levels and lung cancer.
Two individuals may not affect each other’s exposure to pollution from a factory,
satisfying the SUTVA1. But many spatial problems violate the SUTVA. Con-
sider a study about the relationship between county-level fireworks bans and
hospitalization rates: if one county bans fireworks but its neighbor does not,
individuals can travel to the neighbor and acquire fireworks, potentially affect-
ing hospitalization rates in the original county. A first step in addressing this
challenge would be the development of tools to warn researchers of potential
spatially driven SUTVA violations. As such violations can be driven by a variety
of complex effects, introducing an formal system that helps researchers identify
potential issues would be an important, initial step forward.
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3 Integrating recent advances into GIS

The data models and computational foundations of geographic information sys-
tems (GIS) shaped the pattern–process approach. The cartographic origins of
GIS aligned naturally with ontological foundations and data models that rep-
resents real world entities as objects located in space and time (5; 10; 36)2.
Quantitative spatial methods inherit this object-centered representation and the
overlay driven analysis used to compare analog maps. They have been designed
to examine the spatial pattern of a set of objects at one time, or the difference
between a set of objects at several time points. What object-oriented ontologies
and spatial methods do not prioritize or directly analyze, is process.

Understanding causation is facilitated by the analysis of counterfactuals. A
syntax for expressing and manipulating spatial counterfactuals is critical for
the development of further theory in spatial causality. Computationally, recent
innovations in probabilistic programming have made it possible to digitally im-
plement counterfactual inference. Probabilistic programming languages (PPLs)
deliver a toolchain for computationally expressing random variables and prob-
abilistic calculation (27). Typically, these languages can perform statistical (as-
sociational) inference on purely probabilistic relationships (17), but some PPLs
(like gfoRmula (26), Omega (38), MultiVerse (29), and DoWhy (34)) have novel
designs that permit counterfactual inference. Constructing a taxonomy of causal
spatial queries would be a first step towards representing space in a PPL. Next,
building a syntax for spatial interventions in these languages or in a new PPL
would allow researchers to deploy theories of spatial causal inference to an-
swer causal questions related to locations (e.g., “which counties would experi-
ence lower hospitalization rates if a fireworks ban was implemented?” or “would
species A migrate through region R if regulation S was enforced?”).

4 Conclusion

Understanding causality and process has long been a central goal of research
in geography and GIScience. Despite consensus about the need to understand
process in GIScience, implementation of quantitative methods that can facilitate
the transparent communication and formal testing of causal models has remained
limited. This absence is in part the product of the ontological foundation of
most geographic information systems, the slow development of the mathematical
approaches to causality, and computational limitations. However, technological
innovations in statistics and computer science have made it possible to begin
building theory and systems to examine causation with spatial data.

By building on these innovations, we can open the door to developing a cause-
and process-oriented perspective in GIScience that may align our methods with
the target of our inquiries. Stepping down this path begins with designing tools
to identify potential violations of underlying causal assumptions and creating
ways to programmatically express and infer from spatial counterfactuals. By
placing cause and process at the center of studies, researchers will be able to
reframe research questions from “what is happening and where is it occurring?”
to “how is this happening and what drives it?”
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Notes
1In fact, this is a problem where satisfying the SUTVA is a modeling decision

rather than an innate feature of the problem. The researcher could equivalently model
individual interactions that result in exposure to pollution, in which case individual
level treatments would violate the SUTVA.

2The distinction between objects and fields and the ontological accuracy of the
representation of each been the subject of much debate (25; 24; 37; 11). GIS progressed
naturally from the vector model, to the computationally quicker raster model, and
finally hierarchical object-oriented programming. However, the GIScience literature
now recognizes these models as exchangeable (6; 7; 8; 9; 10; 33; 39).
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[19] Jean H.P. Paelinck, Jesús Mur: Some Issues on the Concept of Causality in
Spatial Econometric Models. Estudios de Economia Aplicada 36(1), 107–
118 (2018)

[20] Kedron, P.: Can reproducible and replicable research facilitate causal ex-
planation in geography? In: 2019). Accepted Short Papers and Posters from
the 22nd AGILE Conference on Geo-information Science. Limassol, Chipre.
Editorial, Stichting AGILE (2019)

[21] Kim, C., Daniels, M.J., Hogan, J.W., Choirat, C., Zigler, C.M.:
Bayesian methods for multiple mediators: Relating principal strati-
fication and causal mediation in the analysis of power plant emis-
sion controls. The Annals of Applied Statistics 13(3) (Sep 2019).
https://doi.org/10.1214/19-AOAS1260, https://projecteuclid.org/

journals/annals-of-applied-statistics/volume-13/issue-3/

Bayesian-methods-for-multiple-mediators--Relating-principal-stratification-and/

10.1214/19-AOAS1260.full

[22] Kim, C., Henneman, L.R.F., Choirat, C., Zigler, C.M.: Health effects of
power plant emissions through ambient air quality. Journal of the Royal

https://doi.org/10.1207/s15427633scc0401_5
http://www.tandfonline.com/doi/abs/10.1207/s15427633scc0401_5
http://www.tandfonline.com/doi/abs/10.1207/s15427633scc0401_5
https://doi.org/10.2307/621393
https://www.jstor.org/stable/621393?origin=crossref
https://www.jstor.org/stable/621393?origin=crossref
https://doi.org/10.3406/spgeo.1983.3801
https://www.persee.fr/doc/spgeo_0046-2497_1983_num_12_1_3801
https://www.persee.fr/doc/spgeo_0046-2497_1983_num_12_1_3801
https://doi.org/10.1111/pirs.12144
https://onlinelibrary.wiley.com/doi/10.1111/pirs.12144
https://onlinelibrary.wiley.com/doi/10.1111/pirs.12144
https://doi.org/10.1140/epjs/s11734-021-00378-5
https://link.springer.com/10.1140/epjs/s11734-021-00378-5
https://link.springer.com/10.1140/epjs/s11734-021-00378-5
https://doi.org/10.1609/aaai.v34i06.6577
https://aaai.org/ojs/index.php/AAAI/article/view/6577
https://aaai.org/ojs/index.php/AAAI/article/view/6577
https://doi.org/10.1214/19-AOAS1260
https://projecteuclid.org/journals/annals-of-applied-statistics/volume-13/issue-3/Bayesian-methods-for-multiple-mediators--Relating-principal-stratification-and/10.1214/19-AOAS1260.full
https://projecteuclid.org/journals/annals-of-applied-statistics/volume-13/issue-3/Bayesian-methods-for-multiple-mediators--Relating-principal-stratification-and/10.1214/19-AOAS1260.full
https://projecteuclid.org/journals/annals-of-applied-statistics/volume-13/issue-3/Bayesian-methods-for-multiple-mediators--Relating-principal-stratification-and/10.1214/19-AOAS1260.full
https://projecteuclid.org/journals/annals-of-applied-statistics/volume-13/issue-3/Bayesian-methods-for-multiple-mediators--Relating-principal-stratification-and/10.1214/19-AOAS1260.full


BIBLIOGRAPHY 7

Statistical Society: Series A (Statistics in Society) 183(4), 1677–1703
(Oct 2020). https://doi.org/10.1111/rssa.12547, https://onlinelibrary.
wiley.com/doi/10.1111/rssa.12547

[23] Kolak, M., Anselin, L.: A Spatial Perspective on the Econometrics
of Program Evaluation. International Regional Science Review 43(1-2),
128–153 (Jan 2020). https://doi.org/10.1177/0160017619869781, http://
journals.sagepub.com/doi/10.1177/0160017619869781

[24] Kuhn, W.: Ontologies in support of activities in geographical space.
International Journal of Geographical Information Science 15(7), 613–
631 (Oct 2001). https://doi.org/10.1080/13658810110061180, http://www.
tandfonline.com/doi/abs/10.1080/13658810110061180

[25] Mark, D.M., Freksa, C., Hirtle, S.C., Lloyd, R., Tversky, B.:
Cognitive models of geographical space. International Journal
of Geographical Information Science 13(8), 747–774 (Dec 1999).
https://doi.org/10.1080/136588199241003, http://www.tandfonline.

com/doi/abs/10.1080/136588199241003

[26] McGrath, S., Lin, V., Zhang, Z., Petito, L.C., Logan, R.W., Hernán, M.A.,
Young, J.G.: gfoRmula: An R Package for Estimating the Effects of Sus-
tained Treatment Strategies via the Parametric g-formula. Patterns 1(3),
100008 (Jun 2020). https://doi.org/10.1016/j.patter.2020.100008, https:
//linkinghub.elsevier.com/retrieve/pii/S2666389920300088

[27] van de Meent, J.W., Paige, B., Yang, H., Wood, F.:
An introduction to probabilistic programming (2018).
https://doi.org/10.48550/ARXIV.1809.10756, https://arxiv.org/

abs/1809.10756

[28] Pearl, J.: Causality: Models, Reasoning, and Inference. Cambridge Univer-
sity Press, Cambridge (2000)

[29] Perov, Y., Graham, L., Gourgoulias, K., Richens, J.G., Lee, C.M., Baker,
A., Johri, S.: MultiVerse: Causal Reasoning using Importance Sampling in
Probabilistic Programming. In: 2nd Symposium on Advances in Approxi-
mate Bayesian Inference. pp. 1–36 (2019)

[30] Pollmann, M.: Causal Inference for Spatial Treatments (Oct 2020), http://
arxiv.org/abs/2011.00373, number: arXiv:2011.00373 arXiv:2011.00373
[econ, stat]

[31] Reich, B.J., Yang, S., Guan, Y., Giffin, A.B., Miller, M.J., Rappold, A.G.:
A review of spatial causal inference methods for environmental and epi-
demiological applications (Jul 2020), http://arxiv.org/abs/2007.02714,
number: arXiv:2007.02714 arXiv:2007.02714 [stat]

[32] Rogerson, P.: Spatial Statistical Methods for Geography. SAGE Publica-
tions, Ltd. (2021)

[33] Schuurman, N.: Critical gis: Theorizing an emerging science. Cartographica
Monograph 53(36), 4 (1999)

[34] Sharma, A., Kiciman, E., et al.: DoWhy: A Python package for causal in-
ference. https://github.com/microsoft/dowhy (2019)

[35] Shpitser, I., Pearl, J.: Complete Identification Methods for the Causal Hi-
erarchy. Journal of Machine Learning Research 9, 1941–1979 (2008)

https://doi.org/10.1111/rssa.12547
https://onlinelibrary.wiley.com/doi/10.1111/rssa.12547
https://onlinelibrary.wiley.com/doi/10.1111/rssa.12547
https://doi.org/10.1177/0160017619869781
http://journals.sagepub.com/doi/10.1177/0160017619869781
http://journals.sagepub.com/doi/10.1177/0160017619869781
https://doi.org/10.1080/13658810110061180
http://www.tandfonline.com/doi/abs/10.1080/13658810110061180
http://www.tandfonline.com/doi/abs/10.1080/13658810110061180
https://doi.org/10.1080/136588199241003
http://www.tandfonline.com/doi/abs/10.1080/136588199241003
http://www.tandfonline.com/doi/abs/10.1080/136588199241003
https://doi.org/10.1016/j.patter.2020.100008
https://linkinghub.elsevier.com/retrieve/pii/S2666389920300088
https://linkinghub.elsevier.com/retrieve/pii/S2666389920300088
https://doi.org/10.48550/ARXIV.1809.10756
https://arxiv.org/abs/1809.10756
https://arxiv.org/abs/1809.10756
http://arxiv.org/abs/2011.00373
http://arxiv.org/abs/2011.00373
http://arxiv.org/abs/2007.02714


8 T. D. Hoffman & P. Kedron

[36] Sinton, D.: The inherent structure of information as a constraint to analysis:
mapped thematic data as a case study. In: Dutton, G. (ed.) Harvard Papers
on Geographic Information Systems. vol. 6. Addison-Wesley, Reading, MA
(1978)

[37] Smith, B., Mark, D.M.: Geographical categories: an ontological investi-
gation. International Journal of Geographical Information Science 15(7),
591–612 (Oct 2001). https://doi.org/10.1080/13658810110061199, http:

//www.tandfonline.com/doi/abs/10.1080/13658810110061199

[38] Tavares, Z., Zhang, X., Minaysan, E., Burroni, J., Ranganath, R., Lezama,
A.S.: The random conditional distribution for higher-order probabilistic in-
ference (2019)

[39] Worboys, M.F.: Object-oriented approaches to geo-referenced information.
International Journal of Geographical Information Systems 8(4), 385–399
(1994)

https://doi.org/10.1080/13658810110061199
http://www.tandfonline.com/doi/abs/10.1080/13658810110061199
http://www.tandfonline.com/doi/abs/10.1080/13658810110061199

	Operationalizing Spatial Causal Inference  SDSS 2022

