
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tagi20

Annals of GIS

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tagi20

Controlling for spatial confounding and spatial
interference in causal inference: modelling
insights from a computational experiment

Tyler D. Hoffman & Peter Kedron

To cite this article: Tyler D. Hoffman & Peter Kedron (27 Sep 2023): Controlling for spatial
confounding and spatial interference in causal inference: modelling insights from a
computational experiment, Annals of GIS, DOI: 10.1080/19475683.2023.2257788

To link to this article:  https://doi.org/10.1080/19475683.2023.2257788

© 2023 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group, on behalf of Nanjing Normal
University.

View supplementary material 

Published online: 27 Sep 2023.

Submit your article to this journal 

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tagi20
https://www.tandfonline.com/loi/tagi20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/19475683.2023.2257788
https://doi.org/10.1080/19475683.2023.2257788
https://www.tandfonline.com/doi/suppl/10.1080/19475683.2023.2257788
https://www.tandfonline.com/doi/suppl/10.1080/19475683.2023.2257788
https://www.tandfonline.com/action/authorSubmission?journalCode=tagi20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tagi20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/19475683.2023.2257788
https://www.tandfonline.com/doi/mlt/10.1080/19475683.2023.2257788
http://crossmark.crossref.org/dialog/?doi=10.1080/19475683.2023.2257788&domain=pdf&date_stamp=27 Sep 2023
http://crossmark.crossref.org/dialog/?doi=10.1080/19475683.2023.2257788&domain=pdf&date_stamp=27 Sep 2023


Controlling for spatial confounding and spatial interference in causal inference: 
modelling insights from a computational experiment
Tyler D. Hoffman a and Peter Kedron a,b

aSchool of Geographical Sciences and Urban Planning, Arizona State University, Tempe, AZ, USA; bDepartment of Geography, University of 
California Santa Barbara, Santa Barbara, CA, USA

ABSTRACT
Causal inference is a rapidly growing field of statistics that applies logical reasoning to statistical 
inference to estimate causal relationships. Spatial data poses several problems in causal inference – 
namely, spatial confounding and interference – that require different strategies when designing 
causal models. In order to obtain valid inferences, existing nonspatial causal models must adjust for 
such spatial problems. Given the blossoming literature on spatial causal inference, this research 
analyzes the usage of spatial causal models under a priori knowledge and a priori ignorance of the 
spatial structure of data. We synthesize existing research directions in noncausal spatial modelling 
and causal nonspatial modelling by assessing the performance of 28 spatial causal models across 
16 spatial data scenarios. We used ordinary least squares (OLS) models, conditional autoregressive 
(CAR) models, and jointly CAR models for outcome and treatment variables as the basis for the 
tested models, equipping them with a variety of spatial causal adjustments. We compare our 
results to principles of noncausal spatial modelling and investigate their implications for spatial 
causal modelling. Specifically, we show that noncausal spatial modelling guidance holds in causal 
spatial modelling workflows and demonstrate how researchers can leverage noncausal theory to 
great effect. In parallel, we introduce the spycause Python package of spatial causal models and 
data simulators to facilitate the widespread use of these models and to enable reproduction and 
extension of our work.
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1 Introduction

A central goal of geographic research is to identify 
and infer causal relationships that govern the spatial 
processes that shape real-world phenomena, ulti
mately leading to actionable insights (Harvey 1968; 
Hernán 2018; Pearl 2000). However, the spatial statis
tical methods used in many geographic studies do 
not themselves provide strong evidence of causation 
(Herrera, Mur, and Ruiz 2014). Rather, commonly 
applied techniques such as spatial regression are 
designed to stabilize the estimation of key para
meters by including otherwise omitted spatial rela
tions (Anselin 1988; Cressie 1993; LeSage 2014). Those 
parameter estimates are then given causal interpreta
tions by researchers in light of existing theories and 
prior evidence. This situation presents spatial analysts 
with a contradiction: they endeavour to identify cau
sal connections to better explain and affect phenom
ena in the real world, but often rely on methods that 
provide limited direct evidence of causation.

To address these issues and more clearly connect 
statistical evidence to causal arguments, causal infer
ence has emerged as a subfield of statistics focused on 
the development of methods that model interventions 
and their potential connection to observed outcomes 
(Imbens and Rubin 2015; Pearl 2000). Causal inference 
is distinguished from traditional statistical inference by 
its application of formal logical rules to lend causal 
interpretations to statistical quantities. The goal of 
a causal analysis is to isolate and estimate the effect of 
a treatment on an outcome variable in the presence of 
other factors that may complicate this process. While 
promising, the development of a robust approach to 
space is still emerging in this literature, leaving the 
methodological innovations of causal inference open 
to the well-established critiques of applying non-spatial 
methods to spatial problems (Gibbons and Overman  
2012; Harris, Moffat, and Kravtsova 2011; McMillen  
2010). Namely, that it is necessary to alter conventional 
causal models for estimating causal relationships in spa
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tial applications because geographic processes, and the 
spatial effects they produce, create spatial dependencies 
among observations that violate modelling assumptions 
and require adjustments to avoid biasing parameter 
estimates and inferences (Paelinck and Mur 2018).

A small but growing body of work in spatial statistics 
has begun to engage with the causal inference literature 
(see Akbari, Winter, and Tomko 2021; Gao et al. 2022; 
Herrera, Mur, and Ruiz 2014; Reich et al. 2021). Much like 
the development of spatial regression techniques, these 
scholars are adapting nonspatial causal modelling meth
ods for the analysis of spatial data, resulting in new 
spatial causal modelling techniques. These techniques 
address two uniquely spatial forms of known impedi
ments to causal inference.

First, spatial causal models address the issue of spatial 
confounding, which occurs when a variable at location i 
affects both the treatment Z and outcome Y variables at 
another location j (Figure 1b). If the structure of the 
spatial confounding is known and the confounding vari
able is observed, then a spatial lag of the confounding 
variable may be included to adjust for the confounding 

effects; more complex adjustments are required if the 
confounding variable is unobserved (Section 2.2). If left 
unaddressed, spatial confounding biases statistical esti
mates of relationships among variables and produces 
inferences that cannot be interpreted causally. For 
example, residential location spatially confounds the 
relationship between air pollution and birthweight 
(Paciorek 2010). Individuals choose to live in places for 
a variety of factors, including income and ethnicity, that 
may influence the birthweight of their children. At the 
same time, an individual’s place of residence exposes 
them to differing levels of air pollution. As a result, the 
values of variables like income and ethnicity are spatial 
confounders of the pollution-birth weight relationship: 
their values at neighbouring locations may influence 
both an individual’s exposure to air pollution and the 
birthweight of their children.

Second, spatial causal models include adjustments for 
spatial interference, which exists when the treatment 
variable at location i affects the outcome variable at 
another location j (Figure 1c). Spatial interference may 
be a natural consequence of the spatial dependencies 
that exist between nearby locations (Tobler 1970) and 
can create violations of the stable unit treatment value 
assumption (SUTVA). SUTVA is a central assumption of 
causal inference and holds that one unit of analysis will 
not affect how another unit of analysis responds to an 
intervention. Violations of SUTVA, spatial or otherwise, 
prohibit causal inferences by affecting the outcome vari
able in ways that are not solely due to the treatment 
variable (Imbens and Rubin 2015). For example, Zigler 
and Papadogeorgu (2018) study the impact of installing 
specialized emissions control systems at coal or natural 
gas power plants on hospitalization rates for air pollu
tion-related health outcomes. One power plant receiv
ing such a system may affect anyone who resides 
downwind of the plant; that is, one location receiving 
treatment may have impacts that spill over to neigh
bouring locations. This spillover creates spatial interfer
ence, as an untreated zip code may receive extraneous 
treatment or a mixture of treatments from all upwind 
power plants, altering the outcome variable for that zip 
code. Using an adjustment for spatial interference, Zigler 
and Papadogeorgu found that installing the systems at 
power plants upwind from a zip code, rather than at the 
nearest power plant to a zip code, led to a greater 
reduction in hospitalization rates.

While spatial causal models have the potential to 
strengthen the causal interpretation of statistical evi
dence in geographic research, these methods have yet 
to be widely adopted or studied by geographic research
ers. Two key factors limiting the development and use of 
spatial causal models in geography are a lack of 

Figure 1. Graphical depictions of (a) nonspatial confounding, (b) 
spatial confounding, and (c) spatial interference. In nonspatial 
confounding, confounding variables X affect treatment variables 
Z and outcome variables Y at the same location (a). Spatial 
confounding arises when these relationships cross locations 
(b). That is, Xi takes the role of the confounding variable at 
location j, blocking inference of the effect of Zj on Yj . Spatial 
interference occurs when treatment at one location affects out
comes at other locations (c). Adapted from Reich et al. (2021).
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familiarity with these techniques and a lack of practical 
guidance for their application. When modelling, 
researchers make decisions about spatial structures 
that affect their inferences and add uncertainty to the 
modelling procedure. Noncausal spatial modelling can 
guide these decisions to remedy spatial issues and miti
gate the accumulation of uncertainty in modelling pro
cedures. Our experiments interpret this advice in 
a causal modelling setting to introduce the ideas of 
spatial causal modelling and to begin building a base 
of practical guidance for researchers using spatial causal 
models.

In practice, researchers seldom know whether and to 
what degree spatial confounding and interference are 
present in a data generating process. This situation 
leaves researchers facing uncertainty along two dimen
sions. First, researchers face uncertainty about the spa
tial structure of the data generating process and the 
presence of confounds and interferences. Second, lack
ing certainty about the structure of the data generating 
process, researchers face uncertainty as to which model 
best suits a given circumstance. This uncertainty affords 
researchers a degree of flexibility when determining the 
specification of their model. These researcher degrees of 
freedom (DOFs) (Gelman and Loken 2013; Simmons, 
Nelson, and Simonsohn 2011) and uncertainties about 
the world define two axes of a high-dimensional space 
populated with the (mis)match between models and the 
data generating processes they seek to represent 
(Figure 2). By leveraging spatial reasoning in causal 
inference, geographers may be able to create workflows 
for spatial causal modelling akin to the workflows for 
noncausal spatial modelling.

The noncausal spatial modelling literature contains 
a rich discussion of principles to guide spatial workflows 
(Elhorst 2013; Golgher and Voss 2016; LeSage and Pace  
2009, 2014). In general, simple, parsimonious models are 
preferable to complex models, and prior to beginning 
a spatial modelling analysis, a simple (nonspatial) model 
should be investigated (Fotheringham, Brunsdon, and 
Charlton 2002). If a researcher suspects spatial issues 

may be present, they should employ a conditional or 
simultaneous autoregressive (CAR or SAR, respectively) 
model, reserving more powerful models for when the 
researcher is very confident that the issues are intricate 
and difficult to untangle (Elhorst 2013). Selecting the 
right weights matrix for these models is challenging, 
but researchers must be aware that region-based 
weights may create more problems than they solve 
(Hodges and Reich 2010). Finally, the literature advises 
that researchers make liberal use of spatial and nonspa
tial diagnostics to ensure that all components of the 
modelling workflow are behaving as expected (Anselin 
and Rey 2014).

In this paper, we show that many of these same 
principles hold in a causal spatial modelling context. 
Fundamentally, because there is little difference in esti
mation between causal models and noncausal models, 
insights and guidance from noncausal spatial modelling 
should transfer to causal spatial modelling. We establish 
the usefulness of this advice by testing, validating, and 
illustrating the relative performance of 28 spatial causal 
models across 16 spatial data scenarios. To create the 
data scenarios, we vary the structures of spatial con
founding and interference in the data while holding all 
other parameters constant (Section 2.1). Then, we fit 
three kinds of models with several different spatial con
founding and interference adjustments – an ordinary 
least squares model (OLS), a conditional autoregressive 
model (CAR), and a joint CAR model for the propensity 
score and outcome variables (Joint) – for a total of 28 
spatial causal model structures (Section 2.2). The OLS 
and CAR models are well-studied tools of the noncausal 
spatial modelling literature, but the joint model is tai
lored to causal problems: by using a spatial model for 
the propensity scores that is linked to a spatial model for 
the outcome variable, the joint model represents a very 
detailed spatial structure. Moreover, even if spatial con
founding and interference in the data are not properly 
modelled, we find that noncausal spatial modelling prin
ciples can guide users towards valid inferences. To facil
itate reproducibility and encourage others to build on 

Figure 2. An example matrix of models (rows) and data scenarios (columns) as functions of their parameters. Each entry contains 
a vector of performance metrics and represents a point in combined parameter space (researcher DOFs and data characteristics).
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our work, we develop and share an extensible Python 
package that contains all data generation and model 
code, so users can easily create example datasets with 
spatial and nonspatial confound or interference.

The remainder of the paper is organized into three 
sections. In Section 2, we introduce the design of our 
simulation experiments, including the data generating 
processes and models used. In Section 3, we present the 
outputs of the simulations and explore their implications 
for principles of spatial causal modelling and researcher 
modelling choices. Finally, in Section 4 we highlight key 
takeaways and turn an eye towards what future work 
may hold.

2 Experimental design

The central aim of our experiment is to enable wider 
usage of spatial causal models in geography by 
demonstrating the operation of these models under 
an array of data scenarios. Our experiment considers 
three model forms – an ordinary least squares model, 
a spatial conditional autoregressive model, and 
a hierarchical model for the treatment and outcome 
variables – with a variety of adjustments for spatial 
confounding and interference. We demonstrate the 
relative performance of these causal models across 
our set of experimental results to build a base of 
practical knowledge about the role of space in causal 
modelling. As noncausal models differ from causal 
models in their underlying assumptions rather than 
in their estimation procedures, we show that noncau
sal spatial modelling guidance largely holds in the 
causal spatial modelling setting.

We investigate spatial causal modelling workflows 
where the researcher has a priori knowledge of the 
problem’s underlying spatial structures and where the 
researcher does not have a priori knowledge of the 
problem’s spatial structures. In the first case, we estab
lish the utility of spatial causal models, anticipating that 
nonspatial causal models will not correctly estimate 
average treatment effects in spatially confounded or 
interfered data. It is possible that under weak spatial 
confounding, nonspatial causal models will place con
founding effects into error terms and these models will 
perform well despite not explicitly adjusting for the 
spatial confounding. On the other hand, lacking knowl
edge of the problem’s spatial confounding or spatial 
interference may lead to mismatches between spatial 
structures in the data and in the model that 
a researcher chooses to apply to the data. If spatial 
causal models are highly sensitive to these mismatches, 
then it may be preferable to begin with nonspatial cau
sal models; on the other hand, if some spatial causal 

models have uniformly superior performance to all non
spatial causal models, they will be preferable as analyti
cal starting points. Among these experiments are 
simulations that check if spatial causal models properly 
degenerate to nonspatial models on data without spatial 
confounding or interference. If this is not the case, then 
there may be a significant disadvantage to beginning 
analysis with a spatial causal model.

From the results of our experiments, we construct 
matrices that capture differing combinations model spe
cifications and data scenarios. Each entry in these 
matrices holds information about the performance of 
a set of modelling choices on a set of spatial data char
acteristics, which we use to examine model behaviour 
across a variety of data scenarios (Figure 2). Specifically, 
we consider the bias (accuracy) and the variance (preci
sion) of the estimated parameters as performance 
metrics of interest: a model performs well on a data 
scenario if it exhibits low bias and low variance. The 
next sections define the parameter space of the simula
tions and describe our modelling approaches.

2.1 Data generating processes (DGPs)

To examine the relative performance of spatial causal 
models across data generating processes (DGP) subject 
to different levels of spatial confounding and spatial 
interference, we developed a simulation strategy 
centred on the classic triangular confounding graph 
(Figure 3), which links the effect of treatment Z to out
come Y subject to confounds X . We simulated the DGPs 
on a gridded spatial domain with N ¼ 900 samples 
apiece. Then, we introduced spatial confounding and 
spatial interference into the DGPs via spatial weights 
matrices, which describe the structure of dependencies 
between variables. By using four different weights 
matrices for the spatial confounding and the spatial 
interference, we were able to examine 16 different 
DGPs, which then we simulated 28 times to facilitate 
model comparison for a total of 448 simulations. The 
full details of our simulation strategy and code to repro
duce or replicate our results are available in Appendix 
A and in the simulation study Github repository. Here, 
we present the central features of our simulation proce
dure in five steps.

First, we created nonspatial confounding variables X 
that have a modest level of spatial autocorrelation 
(ρX ¼ 0:9) in accordance with Tobler’s First Law 
(Figure 3, top box). This law states that objects are likely 
to be related to other nearby objects, a feature com
monly found in spatial data (Tobler 1970). Second, to 
introduce spatial confounding, we drw a spatial con
founder U from a conditional autoregressive (CAR) 
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distribution with parameters ρU and σ2
U . CAR distribu

tions are commonly used as DGPs for spatially autocor
related data in simulation studies and applied settings 
(Banerjee, Carlin, and Gelfand 2015; Cressie 1993). Third, 
to model the probability of unit i receiving treatment 
(PðZi ¼ 1Þ), we defined and calculated the treatment 
probabilities πi ¼ PðZi ¼ 1Þ. These probabilities, called 
propensity scores, model the probability of a unit receiv
ing treatment (Zi ¼ 1) subject to measured covariates; in 
this instance the nonspatial confounders X , the spatial 
confounder U , and another CAR term V (independent of 
U) that models spatial dependence in the treatment 
allocation beyond X and U (Reich et al. 2021). Fourth, 
to make the treatment assignment we then drew the 
treatment variable as a weighted coin flip using the 
propensity scores created in step three (Figure 3, left 
box). For each unit i, the probability that Zi ¼ 1 was πi 

and the probability that Zi ¼ 0 was 1 � πi. Fifth, to intro
duce the effects of spatial interference into the simula
tion strategy, we use the N� 2 matrix ~Z ¼ ½Z;WZ� in lieu 
of Z and turn τ into the two-dimensional vector ½τ;~τ�
where τ is the prescribed average treatment effect. To 
facilitate comparison across simulations, the treatment 
effect was held constant at τ ¼ 1:5 and the interference 
effects were fixed at ~τ ¼ 0:5. This technique allows the 
presence of a treatment Z in one location to influence 
the outcome of another location. Finally, we drew the 
values of the outcome variable Y from a normal distribu
tion as a function of the spatial and non-spatial confoun
ders (U , X) and treatment variable (Z, or ~Z if interference 
is present) (Figure 3, right box).

This simulation strategy allows us to simulate DGP 
scenarios that reflect a wide variety of spatial and non
spatial confounding and interference scenarios. For 
example, by setting σ2

U ¼ 0 and ~τ ¼ 0:5, we can investi
gate a scenario in which spatial interference is present 

but spatial confounding is not. Similarly, we can control 
the extent of spatial confounding by varying the spatial 
weights WC used to generate X , the weights WU and WV 

used to generate the confounding terms U and V , or the 
weights WI used to generate the interference. Moreover, 
because each element is simulated using a different 
weighting matrix, we can also easily examine different 
spatial structures for different components of the simu
lation. In this experiment, we constrained our investiga
tion of both spatial confounding and spatial interference 
to four alternative weights schemes – no weights (matrix 
of zeros), binary contiguity (Queen) weights, distance- 
based (k-nearest neighbours) weights, and region-based 
(predetermined) weights. The combination of four 
weights matrices for confounding and four weights 
matrices for interference give a total of 16 data 
scenarios.

2.2 Model specification

Following Reich et al. (2021), we examined three funda
mental model structures: the OLS model, the CAR model, 
and a joint CAR model for the propensity score and 
outcome variables (Table 1). The models were fitted 

Figure 3. Data simulation strategy for the experiments. First, constants are fixed (variables outside of boxes; see Appendix a for more 
information). Next, the confounders X are drawn following the above rules. These are used to generate the treatment variable Z via 
the propensity score π. Finally, the confounders and treatment variables are combined to generate the outcome. Note also that this 
diagram shows the most general possible circumstances – if ρU ¼ 0, for example, then there is no spatial confounding present in the 
data.

Table 1. The three basic model formulations used for fitting data 
in the simulation experiment. For more information on the 
precise structure of a CAR distribution, see Banerjee et al. 
(2015)..

Name Model

OLS y,NðXβþ Zτ; σ2Þ

CAR y,NðXβþ Zτ þ U; σ2Þ

U,CARðρU ; σ2
UÞ

Joint y,NðXβþ Zτ þ U; σ2Þ

Z,BernoulliðπÞ
logitðπÞ ¼ Xαþ ϕU þ V

U,CARðρU ; σ2
UÞ

V,CARðρV ; σ2
VÞ
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using a Bayesian estimation procedure, synthesizing 
prior information alongside signals from the data to 
obtain statistical inferences. We begin with the OLS 
model, which acts as a reference to standard regression 
procedures. However, we note that OLS cannot directly 
model spatial confounding because it assumes all obser
vations are independent of each other; the modelling 
structure does not account for any influence between 
observations at different locations. We then examine the 
CAR model – the basis of many noncausal spatial 
approaches – as it controls for spatial confounding by 
including a spatially structured error component 
(Banerjee, Carlin, and Gelfand 2015; Besag 1975; Besag, 
York, and Mollié 1991; Cressie 1993). Finally, we examine 
the joint model because it is an approach tailored to 
causal problems. By using a spatial model for the pro
pensity scores that is linked to a spatial model for the 
outcome variable, the joint model is able to represents 
more detailed spatial structure. While more sophisti
cated spatial causal models (Diao, Leonard, and Sing  
2017; Keele and Titiunik 2015; Kolak and Anselin 2020) 
exist within the literature, we limited our analyses to 
these three regression adjustments because they remain 
some of the most commonly applied methods in the 
spatial literature and afford direct comparison of esti
mates and performance.

In total, we tested 28 modelling options: 4 total OLS 
models with the four kinds of interference adjustment, 
12 CAR models with combinations of three kinds of 
confounding and four kinds of interference adjustment, 
and 12 joint models with combinations of three kinds of 
confounding and four kinds of interference adjustment. 
To adjust for interference in the CAR and joint models, 
we transform the N dimensional vector Z into the N� 2 
matrix ~Z ¼ ½Z;WZ� and reorganize τ to be a two- 
dimensional vector whose first element is the average 
treatment effect. Adding this adjustment accounts expli
citly for interference in the model setup, identifying the 
average treatment effect when interference is present in 
the data.

All models were fit using a Markov chain Monte Carlo 
(MCMC) algorithm in the Stan programming language, 
a probabilistic programming language used for Bayesian 
inference (Stan Development Team 2021). In Bayesian 
inference, all statistical parameters are assigned a prior 
distribution that describes the modeller’s beliefs about 
the parameter before beginning an analysis. Priors are 
then combined with a likelihood distribution generated 
from the data to create a posterior distribution, synthe
sizing prior belief and real information. In all the models, 
β, τ, and α were assigned independent Nð0; 22Þ priors to 
let the data drive the inferences. The variance σ2 was 

assigned a Exponentialð1Þ prior, putting most of its 
weight on low values. On the spatial terms, the σ2

U and 
σ2

V parameters were transformed into precision para
meters and assigned Γð0:5; 0:005Þ priors, while the ρU
and ρV parameters were assigned implicit Uniformð0; 1Þ
priors. We monitored convergence of the Markov chains 
to the posterior distributions using standard Bayesian 
diagnostics, such as counting the number of divergent 
transitions per chain, computing the effective sample 
size (ESS), computing R̂ scores, or computing the 
Bayesian fraction of missing information (BFMI). For ana
lysing our results across many simulations, we obtained 
point estimates of the parameters using the median of 
their posterior distributions. Summarizing posteriors 
with point estimates is a common practice in application 
as well, trading robust inference for quick interpretation 
(Gelman et al. 2008). More information about the simu
lation procedure can be found in Appendix A.

3 Results

3.1 Bias and variation in treatment effect estimates 
across scenario-model combinations

Our main results are presented in Figure 4.1 Like Figure 2, 
the horizontal axis of both panels presents the 16 simu
lated data scenarios defined by variations in the struc
ture of spatial confounding and spatial interference. The 
vertical axis of both panels presents the 28 the model 
specifications that we examined. Figure 4a presents the 
ratio of the bias to the true treatment effect. For each 
simulation-model combination, we calculated the bias 
by taking the posterior median of the average treatment 
effect and calculated the absolute difference between 
this estimated effect and the true treatment effect. Then, 
we calculated the ratio of the bias to the true treatment 
effect size, putting the bias in units of the treatment 
effect size. This procedure allows us to compare the 
magnitude of the bias relative to the true magnitude of 
the treatment effect. If the bias to treatment effect ratio 
is about 1, then the error in estimating the treatment 
effect is as large as the treatment effect itself, indicating 
a high degree of inaccuracy in the model’s inferences. 
Figure 4b presents the logarithm of the posterior var
iance for the treatment effect for each scenario-model 
combination. Models with higher posterior variance are 
less precise and have more uncertain estimates than 
those with lower posterior variance. As most of the 
variances were very small (median 0.008), we used 
a log transformation to better illustrate the relative 
ordering of variances across scenario-model 
combinations.
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Across all scenario-model combinations, the median 
bias was 25% of the size of the treatment effect. A total 
of 43 (9.5%) of scenarios had a bias at least half the size 
of the treatment effect, while 2 (0.4%) of the scenarios 
had bias at least as large as the treatment effect. In the 
worst performing combinations, a distance-based con
founding and interference scenario modelled by a joint 
model specified with region-based confounding and 
interference, we found bias equal to 1.43 times the size 
of the treatment effect. In the best performing combina
tion, a no confounding or interference scenario mod
elled by a CAR model specified with a distance-based 
confounding adjustment and no interference 

adjustment, we found bias equal to 0.0008 times the 
size of the treatment effect. Among combinations 
where the modelled spatial confounding and interfer
ence adjustments matched the data spatial confounding 
and interference scenarios, the median bias was 24.2% 
the size of the treatment effect. The biases in these 
matched scenarios ranged from 0.3% of the size of the 
treatment effect to 41% of the size of the treatment 
effect, while the unmatched biases ranged from 0.08% 
to 143.9%.

Overall, we found that spatial confounding has 
a more significant impact on model performance than 
spatial interference (Appendix B). One important feature 

Figure 4. Throughout, we use the following abbreviations for the kinds of spatial confounding and interference: N corresponds to 
‘none’, B is for ‘binary contiguity weights’, D is for ‘distance-based weights’, and R is for ‘region-based weights’. panel (a): ratio of bias 
to treatment effect size using posterior medians as point estimates for the treatment effect. Low values indicate better model accuracy 
in capturing the true average treatment effect. Values above 1 imply that the bias is on the same or larger numerical scale as the 
treatment effect, suggesting that the model is highly inaccurate. For all simulations, the true value of the treatment effect was held 
constant at 1.5 for comparability. All models perform very well (low bias to effect size ratio) when no spatial confounding is present in 
the data, but begin to vary in quality with different pairings of spatial confounding and interference in the data. panel (b): logarithm 
of posterior variance of the treatment effect. The log scale was chosen to better illustrate the differences among simulations: of the 
untransformed variances, the minimum value was 0.0005, the maximum was 1.064, and the median was 0.008. Low values indicate 
better model precision and less uncertainty in the posterior distribution for the treatment effect. Most models achieve low variance 
when no spatial confounding is present, but accrue more uncertainty as spatial confounding takes on different forms.
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of Figure 4 is the observable difference between data 
scenarios with and without spatial confounding – 
between the first four columns and the remainder of 
the columns. Across all model specifications, these sce
narios produced less bias and variance than the scenar
ios with spatial confounding because the underlying 
DGP has less structure. For these scenarios, the CAR 
and joint spatial models produced similar levels of bias 
and variance as OLS, indicating that these models 
degenerate to nonspatial models in the absence of spa
tial causal issues.

3.2 Guidance for the specification of spatial causal 
models

We use the results of our simulation experiment to 
evaluate whether five practices used to guide the speci
fication and estimation of noncausal spatial regression 
models hold in the spatial causal setting. We find that 
modelling principles from the noncausal literature hold 
for spatial causal models. We also present advice on 
spatial causal model selection when facing uncertainty 
about unobserved, but potentially spatially struc
tured, DGP.

First, our simulations support the practice of prefer
ring simpler models to complex models in the absence 
of knowledge about the underlying spatial structures of 
the DGP (Elhorst 2013; Gibbons and Overman 2012). 
Figure 4 shows that variance grows primarily as 
a function of model complexity: CAR models generally 
exhibit higher posterior variances in the treatment effect 
estimates than OLS, and joint models generally exhibit 
higher posterior variances than CAR models. In the 
absence of any external or prior information about the 
spatial structure of a dataset, less complex models such 
as an OLS model with no confounding adjustment, or 
a CAR specified with a binary confounding adjustment, 
have only slightly smaller treatment effect variances 
than more complex alternatives, such as joint models 
specified with both spatial confounding and interfer
ence adjustments. Though treatment effect bias 
decreases as model complexity increases, it is offset by 
the increase in treatment effect variance, making infer
ences more accurate but less certain. While simpler 
models require stronger assumptions, they are easier 
to interpret than more complex alternatives as they 
express more direct relationships between variables 
and have fewer parameters to estimate. One caveat to 
this finding is that the sample size of each simulation 
(N ¼ 900) may have contributed to higher variance in 
the joint model. As the joint model has more parameters 
and represents more complex structures, it requires 
a larger sample size to attain the same statistical 

precision as simpler models, making its inferences less 
useful when data is scarce.

Second, if there is reason to believe the DGP might be 
structured by spatial confounding or interference, 
researchers should opt for a spatial model over OLS. 
The first four columns of Figure 4a show that a CAR 
model specified with any type of confounding and inter
ference adjustment exhibits lower bias and variance 
than OLS when the DGP is structured by some forms of 
spatial confounding. Importantly, OLS may produce 
invalid inferences if spatial confounding is present in 
the data. Moreover, CAR models also have low bias 
even in the absence of confounding, which lowers the 
penalty for using a CAR model when the DGP is not 
structured by spatial confounding. In all tested nonspa
tial scenarios, we found that the CAR model degenerates 
to a nonspatial model. There is therefore less risk of 
producing biased estimates when using a CAR model 
than when using an OLS model if the analyst suspects 
spatial confounding and interference may be present in 
the data.

Third, our results suggest that if a strong reason exists 
to believe the DGP is structured by spatial confounding 
or spatial interference, a researcher conducting a spatial 
causal analysis should prefer a joint model to a CAR 
model. Our experimental results show that a joint 
model specified with binary spatial confounding has 
a higher treatment effect variance but less treatment 
effect bias than CAR models specified with any form of 
spatial confounding across all spatially confounded sce
narios. The higher variance of the joint models is driven 
by the greater number of parameters included in the 
model. However, that variance rise is offset by the lower 
bias produced by the joint model in spatially con
founded scenarios due to the model’s inclusion of 
a propensity score model for the treatment effect. By 
explicitly modelling the treatment allocation with 
a spatial component, a joint model can account for the 
effects of spatial confounders on Z as well as on Y. In 
contrast, CAR and OLS models only account for the 
effects of spatial confounders on Y.

Fourth, region-based weights should only be used in 
spatial confounding or spatial interference adjustments 
if a strong reason exists to believe that the spatial con
founding or spatial interference in the DGP is structured 
by regions. Region-based weights group all units within 
a region as neighbours and exclude all units outside the 
region, leading to discontinuities at the borders of 
regions (Figure S1). Even though two units may be 
nearby in distance, a model using region-based weights 
for spatial confounding or spatial interference adjust
ments will not allow the units to affect each other unless 
they are also in the same region. Moreover, a modifiable 
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areal unit problem (MAUP) issue arises if the regions 
used for the model’s weights are not the same as the 
regions of spatial confounding or interference in the 
data: bias may be incurred from the mismatch between 
the model’s regions and the data’s regions. Figure 4 
shows that modelling non-region-based spatial effects 
using region-based weights yields high treatment effect 
bias due to misspecifying the dependencies between 
units (Anselin and Arribas-Bel 2013). On the other 
hand, binary- and distance-based adjustments perform 
equivalently on data experiencing binary- or distance- 
based spatial confounding and spatial interference 
(Figure 4). As such, region-based weights should be 
reserved for data that is highly likely to exhibit region- 
based confounding or interference—e.g. a county-wide 
policy affects the response of local corporations to 
a national regulation – while binary- and distance- 
based weights should be preferred otherwise (Hodges 
and Reich 2010; LeSage and Pace 2014).

Fifth, it may be difficult post hoc to identify scenarios 
when the modelled spatial confounding or interference 
do not match the data spatial confounding or interfer
ence. As the true value of an average treatment effect is 
never known in practice, modellers face a dilemma: it 
may be impossible to tell when a model outputs 
a spurious inference. For both the biases and variances, 
the bulk of the matched and unmatched distributions 

are located around similar values – although the 
unmatched scenarios have more outliers (Figure 5). In 
our simulations, 58% of the unmatched scenarios hit 
diagnostic flags that indicate poor convergence of the 
chains to a posterior distribution. Poor convergence is 
often a symptom of poor model structure and conver
gence diagnostics signal the researcher to consider dif
ferent spatial adjustments.

4 Conclusion

In this paper, we present the results of a simulation 
experiment that establishes the relative performance of 
two approaches to spatial causal modelling across 
a range of spatially structured data generating pro
cesses. Specifically, we compare the bias and variance 
in treatment effect estimates made by a CAR model 
adjusted for spatial confounding and spatial interference 
and a joint model that links a spatial CAR model of 
propensity scores to a spatial model of treatment out
comes. An OLS model is also included for baseline 
comparison.

Our results expand our understanding of the per
formance of spatial causal models under different con
ditions, give practical advice for spatial causal 
modelling, and makes emerging research on spatial 
causal models more accessible to researchers that 

Figure 5. Panel (a): comparison of bias to effect size ratios across matched (data spatial confounding and interference are correctly 
modelled) and unmatched (data spatial confounding and interference are not the same as modelled spatial confounding and 
interference) scenarios. n ¼ 28 in the matched group, n ¼ 420 in the unmatched group. panel (b): comparison of log variances across 
matched (data spatial confounding and interference are correctly modelled) and unmatched (data spatial confounding and inter
ference are not the same as modelled spatial confounding and interference) scenarios. n ¼ 28 in the matched group, n ¼ 420 in the 
unmatched group.
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might use these techniques in geographic applica
tions. By identifying differences in the bias and var
iance of spatial causal models, our work can also be 
used to target specific models for improvement in 
future work. For example, our investigation of region- 
based weights could be extended to study misspecifi
cation error when the modelled regions have different 
shapes than the regions of spatial confounding or 
interference in the data. Understanding the sensitivity 
of spatial causal models to shape and scale issues 
between regions may further inform model selection. 
Likewise, developing different representations of spa
tial dependence beyond the weights matrix may alle
viate the bias incurred from misspecification by 
removing constraints on the model.

It is important to note that causal interpretations of 
statistical parameters are only valid under the assumptions 
of the model. The difference between a causal model and 
a statistical model lies in their identifying assumptions. 
While all of the parameters in the tested models are statis
tically estimable, the parameters only have a causal inter
pretation if all sources of confounding have been 
controlled in the model. In our simulations, only 28 of the 
448 simulations (6.25%) satisfied this condition. In real- 
world analyses, researchers typically do not know the true 
causal process or how it is structured by other factors or 
spatial processes, so models with well-justified assump
tions are used to approximate causal inference. This situa
tion not only highlights the importance of the reasoning 
that underlies a model, but re-emphasizes the value of 
working with domain experts that can provide context, 
prior knowledge, for spatial modelling decisions. 
Leveraging this information is key to ensuring modelled 
spatial confounding and interference are as closely 
matched to the data’s spatial confounding and interference 
as possible, thereby improving approximation of a causal 
identification. As such an important avenue for future 
research is to develop a set of best practices for collaborat
ing with domain experts to improve model specification 
and causal estimation.

Finally, we encourage researchers interested in 
expanding upon our work to explore the online version 
of our results matrix in the https://github.com/tdhoff 
man/spycausespycause-experiments repository and to 
use the https://github.com/tdhoffman/spycausespy 
cause Python package to further test and improve spa
tial causal models. The latter package contains all the 
code needed to simulate data and fit spatial causal 
models, while the former contains our simulation dri
vers, data files, and graphical outputs. Tutorialization 
and documentation are also key components of the 
spycause package: Jupyter notebooks in the repository 
demonstrate the use of spatial causal models and act as 

interactive examples. In this paper, we used only a small 
portion of the flexibility built into the simulation proce
dures of the spycause package. Future simulation stu
dies may benefit from varying more parameters, 
exploring different spatial structures in datasets, and 
testing a broader range of spatial causal models.

Note

1. The full results of the simulations are hosted on the 
Github repository for this project under outputs.
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