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Abstract. Topological data analysis, and in particular persistence diagrams,
are gaining popularity as tools for extracting topological information from noisy

point cloud and digital data. Persistence diagrams track topological features

in the form of k-dimensional holes in the data. Here, we construct a new,
automated approach for identifying persistence diagram points that represent

robust long-life features. These features may be used to provide a more accu-

rate estimate of Betti numbers for the underlying space. This approach extends
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the established practice of using a lifespan cutoff on the features in order to take
advantage of the observation that noisy features typically appear in clusters in

the persistence diagram. We show that this approach offers more flexibility in

partitioning features in the persistence diagram, resulting in greater accuracy
in computed Betti numbers, especially in the case of high noise levels and

varying image illumination. This work is motivated by 3-dimensional Micro-

CT imaging of ice core samples, and is applicable for separating noise from
robust signals in persistence diagrams from noisy data.

1. Introduction. Topological data analysis (TDA) is a rising field at the intersec-
tion of Mathematics, Statistics, and Machine Learning [14, 4, 25, 6]. Techniques
from this field have proven successful in analyzing a variety of scientific problems
and datasets (see e.g. [23] which includes a long list of application areas). The main
driving force in TDA is the development of persistent homology (see e.g. introduc-
tory texts [10, 26]), which studies the intrinsic shape of data. Persistent homology
is a mathematical construction from the field of algebraic topology, and in prac-
tice, persistence diagrams (summaries of the persistent homology) yield topological
information. A persistence diagram is a multi-set that contains birth and death
coordinates for each topological feature in an appropriate filtration of the data. In
this work, the filtration is a series of nested subsets of pixels in a grayscale image
that correspond to increasing the grayscale threshold whereby pixels with smaller
values are considered to be included in the dark/black portion of the image. Be-
cause of our main application to ice core samples, we will often invert the images
so that we instead study the light/white portion of the image corresponding to ice.
The birth and death coordinates record the position in the filtration of the data
where a topological feature such as a connected component or a higher dimensional
hole first and last appears respectively.

Birth/death coordinates reveal information about when the feature appears in
the filtration and about the robustness of a feature. Typically, a feature a with
long lifespan (the difference between the death and birth coordinates) is considered
to be a robust/true feature while a feature with a short lifespan is treated as less
important and most likely due to noise. Generators arising due to noise in the
data will also often appear in clusters near the diagonal (where the death coordi-
nate is approximately equal to the birth coordinate) in the persistence diagram.
We demonstrate this in a series of benchmark studies in Section 3. One of the
fundamental goals in this area is to develop methods for automatically partitioning
persistence diagrams in order to separate robust features from features due to noise.
In this work, we propose a method called Density-based Persistent Feature Detec-
tion (DPFD) that trains an extension of the well-known DBSCAN method [11] for
clustering, in order to partition persistence diagrams and calculate Betti numbers,
the counts of topological features of different dimensions. The application of DPFD
in this work focuses on counting and labelling contiguous regions in images, which
amounts to considering Betti 0 of sublevel set filtrations. However, it is important
to note that the DPFD algorithm may be applied on diagrams of any dimension.

Related work in this area has established algorithmic approaches to this prob-
lem. Authors of the work [12], one of the first results in this direction, developed
a statistical approach to separate robust features from noise. They describe four
bootstrapping and sampling methods for constructing a confidence interval around
the diagonal of a persistence diagram. Beyond this interval, generators are consid-
ered to be true features; within the interval, generators are considered to be noise.
This works well for some large point cloud data sets and filtrations on simplicial
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complexes. While the general approach of applying a lifespan cutoff to separate
long from short lifespan features works well for some persistence diagrams, espe-
cially in the case of small amplitude noise, it does not work well for the ones we
consider here, as we demonstrate in Section 3. Two other approaches also focus on
partitioning persistence points. In [3, 2], the authors describe a point-wise criteria
that separates the topological noise from robust features. This point-wise criteria
is based on persistence entropy (see [3, 2]), which gives a measure of complexity
on persistence diagrams. This work also focuses on point cloud data and simplicial
complexes. Finally, image data and cubical complexes motivated the PD Thresh-
olding method [7], designed as a topological optimization procedure for segmenting
a grayscale image into a binary one. Persistence points that are present in the
thresholded binary image, perhaps with the addition of a lifespan cutoff, are then
considered to be ‘robust’ features.

As we show in Section 3, our proposed method outperforms these methods on
the noisy image data sets we consider. In particular, the geometry imposed by
both lifespan cutoff and PD Thresholding on the partition boundaries applied in
the persistence diagram lack the necessary flexibility to separate robust from noisy
features in the case of varying image illumination and moderate noise levels. Our
proposed method, on the other hand, uses a clustering algorithm to allow for a more
highly adaptive approach and improved accuracy. We demonstrate this first on a
conceptual rice image where tagging features in the image allows us to verify the
accuracy of the classification of features in the persistence diagram. We then use
a machine learning approach on our firn application example to tune the necessary
parameters and achieve improved accuracy in Betti number calculations over a range
of images.

The motivation for this approach, and application we study in Section 4, is the
quantification of the microstructure of firn, a porous medium that occurs in polar
regions where snow rarely melts. In polar regions, snow continuously accumulates
and creates a column of firn layers in the topmost region of ice sheets. These firn
layers consist of ice (lighter/grey pixels, Figure 1) and interconnected pore-space
(darker/black pixels, Figure 1), and have increasing density with depth due to the
increasing overburden pressure from accumulating snowfall at the surface. The
pore-space is connected to the overlying atmosphere, and allows gases to diffuse to
the bottom of the firn column where the layers reach the density of glacial ice and
the pores close off into individual bubbles. These bubbles trap a direct sample of
the atmospheric air into the glacial ice, and provide a powerful record of Earth’s
past atmospheric composition. Understanding the changes in firn structure with
depth is critically important for interpreting ice-core paleoclimate records [24].

One way to examine the firn microstructure is to three-dimensionally scan sam-
ples using x-ray computed tomography (Micro-CT) [17]. This process produces a
stack of two-dimensional grayscale images that represent the original firn sample.
The 2D reconstructed images are also referred to as “slices” because they represent
the cross-section of firn microstructure at specific sample depths, as if you were slic-
ing through the sample at that depth to reveal the internal structure. Stacking the
slices generates a three-dimensional reconstruction of the entire firn sample, where
Slice 1 and Slice 900 represent the top and bottom of the sample, respectively. As
counts of topological features, Betti numbers, βi, can be used to quantify topolog-
ical shifts in the firn microstructure with depth. We focus here on β0, which gives
a count of the number of connected components of a given set. Betti numbers are
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Figure 1. Samples of firn Micro-CT images at different depths.
Lighter grey regions represent ice-space and darker regions rep-
resent pore-space in each image. In this work, there are 14 firn
samples (not columns) in total, the depths of which range from
7 to 78 m in the firn column. Only select samples from that
range of depths are shown here. Each sample consists of over
900 cross-sectional slices of 2D grayscale images of size 400 × 400
pixels. In other words, each sample is a 3D image of dimen-
sion 400 × 400 × 900 voxels. We refer readers to our github page
(https://github.com/azlawson/Firn) for a visualization of these
3D images. Only the 300th, 450th, and 600th slices from each sam-
ple’s stack of slices are shown here. Counts of contiguous ice and
pore-space regions, respectively, as determined by an expert in firn,
are shown in parentheses.

shown in Figure 1 for the ice (lighter) and pore-space (darker) portions of the im-
ages and we will refer to these numbers as the counts of ice regions and pore regions
respectively to avoid confusion. As shown in Section 2 and as is typical for noisy
images, points most likely due to noise dominate persistence diagrams. Methods
for separating features corresponding to the firn pore or ice spaces from features
arising from measurement/image noise are essential in order to get useful estimates
of Betti numbers for firn. As we show in Section 4, the method we propose here
produces Betti numbers with reasonably low error. As a sample result, Figure 12
shows the resulting Betti number estimates as a function of firn depth, recording
the topological shift that occurs in the firn column.

In what follows, we outline some mathematical background on persistent ho-
mology in Section 2 and motivate the need for a new approach to partitioning
persistence diagrams. We present the proposed method, DPFD, and give empirical

https://github.com/azlawson/Firn
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results in Section 3. In Section 4, we apply DPFD to the study of firn, calculating
Betti numbers as a means of tracking topological changes in the microstructure as
a function of depth. Finally, we conclude the paper with a discussion of the firn
results and directions for future work in Section 5.

2. Background and motivation. Persistent homology is a tool from TDA that
is used to extract topological and geometric information from data. It is a versatile
tool that can be applied to many types of complex datasets such as point clouds,
time series, images, and more. We provide a light introduction to homology and
persistent homology via cubical homology, but we note that other homology theories
will suffice.

2.1. Cubical sets. This section loosely follows the cubical homology development
found in [16]. An elementary interval is a closed interval I ⊂ R where I = [`, `+1]
or I = [`, `] (degenerate) and ` ∈ Z. An elementary cube Q is a direct product of
elementary intervals and the dimension of an elementary cube Q is the number of
non-degenerate elementary intervals in the product. For example, a 0-dimensional
cube is a single vertex, a 1-dimensional cube is a unit length segment, and a 2-
dimensional cube is a square with unit length sides. As our main application in
this paper is to 2-dimensional images, we need only focus on cubes of dimension 2
or less. A cube P is said to be a face of Q if P ⊂ Q. A cubical set is a subset of
real numbers X ⊂ R that can be written as a finite union of elementary cubes. We
define Kk(X) to be the collection of k-dimensional cubes in X.

2.2. Cubical homology. Homology is a tool from algebraic topology that allows
us to assign algebraic objects (namely a group or in our case a vector space) to a
topological space. Cubical homology allows us to systematically assign these objects
to cubical sets. Typically, homology is defined over a general ring of coefficients,
however for our treatment, we will fix the ring to be Z2. This allows us to forgo
discussion of orientation on cubical sets. Let X be a cubical set. For each k, we
generate vector spaces of formal linear combinations Ck(X) with basis Kk(X) and
coefficients coming from Z2. We next define linear maps ∂k : Ck(X) → Ck−1(X)
called boundary maps that satisfy ∂k+1 ◦ ∂k ≡ 0. We will not explicitly define this
map here, but we will note that this latter property tells us that the kernel of this
map, ker ∂k, also called the k-cycles, is a subspace of im ∂k, of the k+ 1-boundaries.
Thus, this allows us to immediately define the k-th homology group Hk(X) as the
quotient group Hk(X) = ker ∂k/ im ∂k+1. The nontrivial elements in the homology
group correspond exactly to those cycles or combinations of elementary cubes that
are not part of a boundary. Intuitively, generators of Hk(X) correspond to k-
dimensional topological features or “holes” in X.

2.3. Persistent homology. Persistent homology allows us to track changes in
homological features over a nested sequence of topological spaces. A sequence of
topological spaces Xi satisfying Xi1 ⊆ Xi2 ⊆ . . . ⊆ XiN , is called a filtration.
The resulting inclusion maps ιp,q : Xip → Xiq , where p < q, then induce linear
homomorphisms ιp,qk : Hk(Xip) → Hk(Xiq ). These maps on homology allow us to
track changes in the set of topological features over this filtration. We say that a
feature α ∈ Hk(Xb) is born at index b if α /∈ im(ιb−1,b) (or b = 1). We say that this
same feature α dies at d if α ∈ im(ιb,d−1) and α /∈ im(ιb,d). If α ∈ im(ιb,N ), then
we say that α “never dies” and is assigned a death coordinate of ∞. In practice,
we replace ∞ with iN . The lifespan of α, l = d− b, is the difference in these birth
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Figure 2. Motivational example of sublevel set filtration and the
corresponding persistence diagram. (a) The original grayscale im-
age f . (b)-(i) Sublevel set of f at different values of threshold t. We
color the sublevel set as white. (j) Labels for the rice grains. We
used GUDHI[9] to calculate persistence and track generators. Red
points are the generators corresponding to the purple points in (k),
and the green one is the infinite generator in (k). (k) 0-dimensional
persistence diagram, D0. The purple points correspond to features
with red labels in (j). (l) Illustration of the lifespan cutoff with
selected points in purple. (m) Illustration of the PD Thresholding
method with selected points in purple.

and death times. The collection of birth and death time pairs for each feature in
the sequence is called a persistence diagram.

2.4. Persistence diagrams and feature extraction. In this work, our main
application is measuring topological structure in image data. We view an 8-bit
grayscale image as a function, i.e. f : P → {0, 1, 2, · · · , 255} where P is a
collection of pixels or voxels. There are some ways to create a filtration associated
with f [13, 21]. We adopt the widely-used sublevel set filtration. Formally, given a
threshold t, the corresponding sublevel set of f is defined as f−t := {p ∈ P | f(p) ≤
t}. By construction, f−t is a cubical set (see [16]) and these sublevel sets form a
filtration

f−0 ⊆ f
−
1 ⊆ f

−
2 ⊆ · · · ⊆ f

−
255.

For visualization purposes, we use white to represent the sublevel set. (Note that
to make this consistent with the usual interpretation of grayscale values where 0 is
black and 255 is white, one would first need to invert the scale.)

For illustration, we consider the rice grain image shown in Figure 2(a). This is
a grayscale image with noise in the grayscale values and illumination levels that
vary across the image, two of the challenges that we also see in firn micro-CT data.
Figure 2(b)-(i) illustrate the sublevel sets at different threshold values. Figure 2(k)
shows the 0-dimensional persistence diagram, denoted by D0, for the sublevel set
filtration of the rice image. Visually, one may count directly that there are 79
grains of rice in Figure 2(a), shown tagged with a red or green dot in Figure 2(j).
D0 contains the information about connected components in sublevel sets ft, which
include the grains of rice as well as additional components due to noise in the
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image. It is our goal to construct an algorithm to extract those 79 features from
the persistence diagram; more precisely the purple (darker) points in Figure 2(k).

Remark 1. It is important to note the possibility that an object in an image
may have several corresponding homology generators depicted as multiple points
in the persistence diagram. It is our goal to, for each object, select the longest-life
generator of that object that exists in the diagram. We refer to these particular
generators as robust generators (represented by purple or dark points in our figures),
while points not selected by these methods are called “noise” and are represented
by yellow or light colored points in our figures.

The most common way to extract presumably robust features is to apply a lifes-
pan cutoff L to D0. More precisely, consider DL

0 := {(b, d) ∈ D0 | d− b > L}. The
intuition is that long lifespan points in D0 are likely the robust/true features. As
shown in Figure 2(l), the green dotted line represents the lifespan cutoff d− b = 50
with points above it labeled as features, while points below it are labeled as noise.
One may count that #D50

0 = 120 6= 79. In fact, as can be seen in Figure 2(l),
no matter which lifespan cutoff L we use, DL

0 never yields the desired set (purple
points in Figure 2(k)). The main difficulty is that there is no way to avoid those
noisy generators located in the region [90, 150]× [90, 150] while capturing all of the
desired points. Thus, a linear cutoff of this type would not work.

Another method for extracting features is the PD Thresholding method [7],
which was designed to automatically threshold a grayscale image to produce a
binary image. The essential idea in PD Thresholding is to scan over the fun-
damental boxes [10], defined as D0(t) = {(b, d) ∈ D0 | b ≤ t, and, d > t}, for
all t ∈ {0, 1, 2, · · · , 255}, trying to choose a value of t that maximizes the con-
tainment of long lifespan features while minimizing the number of short lifespan
points. For instance, D0(74) is depicted as the region enclosed by the green dot-
ted line in Figure 2(m). Applying PD thresholding to the rice image, returns a
threshold of 74. Thus, one could use points in D0(74) as features. We observe
#D0(74) = 152 > 120 > 79 yields an even larger overestimate of the features
than the lifespan cutoff approach. This over counting is a common problem for PD
Thresholding when short lifespan generators appear to be spread out along the di-
agonal and are therefore unavoidable when optimizing over fundamental boxes [7].
Note also that the spread of true features (purple points in Figure 2(k)) in the per-
sistence diagram also prevents any one fundamental box from capturing all desired
features. Essentially, varying illumination in the image prevents any one global
threshold from capturing every grain of rice.

At this point, we have seen that both lifespan cutoff and PD Thresholding run
into trouble for the rice grain example, and, by extension, similar noisy grayscale
images with varying illumination. This is often the case for our motivating example
of firn, which we study in Section 4. We, therefore, develop the more flexible
approach in Section 3 that is the focus of this work.

3. DPFD and empirical results. As seen in Section 2, persistence diagrams
arising from real data contain points corresponding to features that we are trying
to measure, as well as points that are due to noise. The rice grain example demon-
strates the somewhat standard heuristic that true features tend to have longer
lifespans and points generated by noise tend to form clusters that sit close to the
diagonal. Figure 2 also shows that partitioning these points by lifespan (using a
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Figure 3. Illustration of the DPFD method. The yellow ellipses
represent clusters that are labelled to be noise, while the purple
cluster is labelled as features since its minimum lifespan is above
the designated cluster cutoff.

lifespan cutoff) or by threshold (as in PD Thresholding) may not produce accu-
rate results. Instead, we need an approach with the ability to identify the shape
of true feature (purple) points versus noisy feature (yellow) points that we see in
Figure 2(k) and shown conceptually in Figure 3.

Towards this goal, we present the Density-based Persistent Feature Detection
(DPFD) method, so named for its application of the Density-Based Spatial Cluster-
ing of Applications with Noise (DBSCAN) [11] algorithm for density-based cluster-
ing, to persistence diagrams. Conceptually, we seek to use density-based techniques
to identify clusters in a persistence diagram and then, using a lifespan cut off pa-
rameter, label clusters as either “noise” or “features.” This reflects the observation
that noise tends to be clustered in the persistence diagram and in clusters that
include points with short lifespans. While short lifespan features may be removed
via a lifespan cutoff, it is possible, as indicated in Figure 5, that diagram points
with longer lifespans should also be considered noise. DPFD classifies these points
as noise by taking into account the proximity of these points to a noisy cluster.

The heart of DPFD is the DBSCAN clustering algorithm. To account for com-
plexity and noise in the persistence diagram, we first run DBSCAN on points in the
persistence diagram and retrieve a labeling indicating clusters and isolated points.
DBSCAN requires two parameters: ε, a cluster radius within which points are con-
sidered neighbors, and M , the minimum number of points required inside such a
radius in order to form a cluster. A natural equivalence relation is formed given
these two parameters: two points are in the same cluster if they are connected
by a chain of points that each have M points within ε distance. The outputs of
DBSCAN are isolated points and clusters. Since short lifespan generators tend to
be far more prevalent in diagrams, important long lifespan features are typically
returned as outliers by DBSCAN.

Finally, to classify features and noise, the DPFD method lifts the idea of a lifespan
cutoff from a pointwise application to a “clusterwise” application. After extracting
the isolated points and clusters from DBSCAN, DPFD computes the minimum
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Algorithm 1 The Density-based Persistent Feature Detection (DPFD) method.

Input
D persistence diagram
L0 cluster relabel lifespan cutoff
ε cluster radius
M minimum points to cluster

Output
F set of features of the diagram

(isolated points I, clusters C) ← DBSCAN(D, ε, M)
features F ← I
for C ∈ C do m← min(b,d)∈C d− b

if m > L0 then
F ← F ∪ C

end if
end for
for (b, d) ∈ F do

if d− b < L0 then
F ← F \ {(b, d)}

end if
end for

lifespan, m(C) = min(b,d)∈C(d− b) of each cluster C. Then the cutoff is applied: if
m(C) is less than some inputted cutoff L0, the cluster is labeled as noise; otherwise,
the entire cluster lies beyond the short-lived region and is labeled as features. We
repeat the cutoff application for each isolated point. This outputs a list of diagram
points we call features that have long lifespans and are far away from noisy clusters.
Figure 3 provides a conceptual illustration of the DPFD method while Algorithm 1
provides the corresponding pseudocode.

DPFD has three parameters: ε and M , the parameters for DBSCAN, and L0,
the cluster labeling cutoff. The DBSCAN parameters depend solely on the scale
of the persistence diagram. In our application of DPFD, we introduce an auxiliary
parameter for determining ε based on the scale of the diagram. Specifically, the
parameter is a quantile q of pairwise distances of points in the diagram. In our
implementation we fix the lifespan cutoff L0 = 50, and perform a grid search for
the optimal pair of (q,M). To test this approach, we first applied it to an image of
rice where we set the potential values for q as multiples of 0.03 up to 0.3 and the
potential values for M as multiples of 10 up to 200. Figure 4 shows the result of
DPFD with parameters M = 20, q = 0.1, and L0 = 50 for the original rice grain
example, showing that this approach has the flexibility to accurately partition the
points. By comparison, using a lifespan cut-off and optimizing for accuracy in the
count of 79 features results in the labeling shown in Figure 5, showing that the
lifespan cutoff approach is not able to simultaneously detect all rice grain features.

From here, we set up an experiment to gauge the robustness of the (q,M) pa-
rameter pair. The true feature set (purple points) output by DPFD with M = 20,
q = 0.1, and L0 = 50 is the set containing the longest lifespan generator for each
grain of rice (in this example, there is only one such generator for each grain of
rice), as shown in Figure 4. We, therefore, designate the corresponding labeling of
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Figure 4. Application of DPFD to the rice example shown in
Figure 2. The parameters are M = 20, q = 0.1, and L0 = 50.
Purple (darker) points are detected by the DPFD, and the exact
79 features are detected.

Figure 5. Application of lifespan cutoff to the rice example shown
in Figure 2. Purple (darker) points are D83

0 . #D83
0 = 78. Missing

and mislabeled features are highlighted by green circles.

the persistence diagram points by feature/not feature as the ‘optimal labeling’ and
compare the results given by DPFD for other (q,M) pairs. Due to the imbalanced
data (79 features and 4540 noise), we measure the performance of (q,M) pairs by
using precision and recall. Here, precision is the proportion of predicted features
that were actually true features and recall is the proportion of the true features that
are detected as features. For both, a higher value is a better score. Figure 6 shows
two plots of (q,M) pairings colored separately by the precision and recall scores of
their labeling. One immediate point of interest is the apparent robustness of the M
parameter. A change in this value over the computed range does not seem to affect
model performance much. On the other hand, DPFD seems a bit more sensitive to
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Figure 6. Precision and Recall plots for various (q,M) pairs.

Figure 7. Rice grain count errors for various (q,M) pairs.

the q parameter over the computed range. This may largely be caused by the fact
that when M is too low and q is high, fewer clusters are formed making it more
likely that true features will be clustered with noise. We also implement a second
scoring metric by way of the predicted number of rice grains. Figure 7 shows the
relevant plot. Here again we can see the robustness of the approach with respect to
the M and q parameters.

4. Application to firn and its impact. Given the experimental success of DPFD
for identifying rice grains, we move now to our motivating application of quantifying
ice and pore-space regions in firn images.

Our data consists of Micro-CT images of firn samples taken from Summit, Green-
land. For each depth, we selected 3 images from each reconstructed stack – the 300,
450, and 600th slice, giving a total of 21 images. These images were subsequently
analyzed by an expert who counted the number of contiguous white regions (ice)
and the number of contiguous black regions (pore-space). We used this data to train
and test two models. Specifically, our training set consists of the 300th and 600th
slices from each depth, the testing set contains only the 450th slice from each depth,
and we know the counts of the number of features of each type but not the correct
labeling of points in the persistence diagrams. We will, therefore, use mean squared
error on the counts of features rather than the precision and recall errors computed
in the rice example. Our goal is to provide a count of ice regions and pore-space
regions. Finally, we use mean squared error to score these models. Before building
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Figure 8. The process for the DPFD model. From left to right
we have the original image, the image resulting from the applica-
tion of median blur and the morphological opening, the persistence
diagram of the preprocessed image, and finally the application of
DPFD.

our models, we remove small scale features from the images, including sample dust,
by applying the morphological operation of opening using a 7 × 7 structuring ele-
ment followed by a median blur filter with a 9× 9 kernel. A sample original image
and that same image following this preprocessing step are shown in Figure 8 and
are consistent with the domain expert’s view of the images.

The DPFD model is based on the DPFD algorithm. Recall that for this algo-
rithm, we have three parameters: the cluster radius (ε), the minimum points to
cluster (M) and the lifespan cutoff (L0). In our model, we decided to select ε based
on the input diagram by taking a specific quantile q of the pairwise distances of
the points in the diagram (excluding the distances from the points to themselves).
Moreover, for the DPFD model, we fixed L0 = 50. Finally, for each depth, we
selected the optimal M and q to minimize the training error, that is, minimizing
the mean squared error for the count of features on that depth. Thus, the DPFD
model is a collection of models that have varying M and q parameters based on
depth. Figure 8 gives an example of the process for each image. On the left is
the original image. Figure 9 shows the plots of the q and M parameters that were
considered optimal by the DPFD model. Perhaps most notable is the variance of
the parameters over depth. There are several possible reasons for this, but perhaps
most likely is the small size of the training set at just 2 images per depth. Figure 10
shows an example of DPFD applied to one of the firn test images along with the
tagged ice regions based on the diagram points detected by the DPFD. Notably
here, the DPFD model has accurately tagged all of the relevant ice regions in this
image. Finally, Figure 11 shows our worst performance on a test image. We see in
this figure that the ice is still properly tagged, however, it has been tagged three
times.

The Lifespan model was built similarly as a collection of models. This model
was based on lifespans. In particular, we had one parameter (lifespan cutoff) that
counted features with a lifespan above the given cutoff. Tuning this parameter
for each depth was again accomplished through a simple grid search. In firn, as
in the rice example, there are situations where no lifespan threshold will work to
accurately count and tag features in an image. The diagram in Figure 10 is an
example of such a situation.

We applied both models to the separate tasks of ice regions and pore-space
regions. After tuning the parameters for each depth and for each model, we saw
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Figure 9. A plot of the computed optimal q and M over depth

Figure 10. An example of DPFD on a firn image. The image is
tagged based on the selected diagram points. From left to right
are: the persistence diagram computed on the original image, the
persistence diagram computed on the preprocessed image, and the
original image tagged by points corresponding to the features iden-
tified by DPFD.

Figure 11. An example of DPFD over-labelling ice on a firn image

that the DPFD model obtained an average test error of 0.5 for counting ice regions
and 0.6 for counting pore-space regions. The Lifespan model obtained errors of 0.6
and 0.9 for ice and air respectively. We did not consider PD Thresholding as a viable
model due to its tendency to overcount by identifying points near the diagonal as
features. Overall, the DPFD model had a lower error on average that the Lifespan
model in counting both ice and pore-space regions. The right plot in Figures 12
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and 13 illustrate the test error at each depth, where the true values were counted
and reported by an expert.

Finally, with the DPFD model trained, we applied it to all depths and images
from the set of Summit, Greenland firn samples to count both the ice and pore-
space regions. Figures 12 and 13 show the average estimates of the number of
contiguous ice regions and the number of contiguous pore-space regions, respectively.
As expected, we find that the number of contiguous ice regions decreases with depth
as the firn becomes more dense. As firn densification proceeds, disconnected ice
particles (e.g., Figures 1a, h, o) merge into fewer distinct ice particles with depth
until a single ice-matrix is formed around the pores (e.g., Figures 1g, n, u). We also
find that the estimated number of pore-space regions increases, with a sharp rise
below 23 m depth, and continues to remain large with depth, as expected. During
firn densification the large, interconnected pore-space closes off into individual pores
as the ice matrix grows. While the size of the individual pores continues to decrease
with depth due to densification, the number of the pores remains fairly constant,
which we see in the results.

The trends in the estimated values of both the number of ice regions and the
number of pore-space regions match that of the true values including the rise in
values between 23 and 26 m depth (Figure 12, Figure 13). This sharp rise in values
is potentially a result of the shift between pore-space dominated (e.g., Figures 1a,
h, o) and ice dominated images (e.g., Figure 1b, i, p) around 23 m depth at this
site. Considering the estimated values over the full range of depths, both models
overestimate the number of ice regions at shallow depths, as well as the number of
pore-space regions at deeper depths. This is most likely due to small scale features
that remain following the minimal preprocessing performed on the images. Overall,
the DPFD model better estimates both the ice and pore-space regions at all depths
compared to the Lifespan model.

These results are promising, showing that we can accurately identify the cor-
rect number of ice regions and internal pore spaces in the Micro-CT firn images.
Improvements in firn-densification models, which are critical for improved ice-core
paleoclimate records, require incorporation of firn microstructural information [20].
This is no easy task, as our best tool for retrieving microstructure data is the Micro-
CT, which produces terabytes of data for each firn core that is three-dimensionally
reconstructed. Therefore, finding automatic ways to accurately detect basic mi-
crostructure values, such as the Betti numbers, is a crucial step in developing the
next generation of firn densification models.

5. Discussion and conclusion. Motivated by the observation that persistence
diagram points corresponding to noise tend to be clustered near the diagonal, we
develop DPFD, a density-based method for extracting features from persistence
diagrams. On the empirical rice grain example, DPFD outperforms both lifespan
cutoff and PD Thresholding methods. We verified the accuracy of DPFD in the rice
example, where tagging features classified as true features allows us to check that
they actually correspond to grains of rice. Moreover, we tested the robustness of the
parameters for DFPD and found a wide range of acceptable parameters. For the firn
example, we tested both DPFD and lifespan cutoff, and DPFD produced smaller
model errors. We also demonstrate a training method to select the parameters
required for DPFD given benchmark counts of features, in our example given by
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Figure 12. Left : The average count of ice regions estimated by
the DPFD model with a band of one standard deviation in green as
a function of depth. Middle: The average count of ice regions esti-
mated by the Lifespan model with a band of one standard deviation
in green as a function of depth. Right : The difference between the
true number of ice regions in the test images, as defined by an ex-
pert, and the estimates given by the DPFD and Lifespan models.

Figure 13. Left : The average count of pore-space regions esti-
mated by the DPFD model with a band of one standard deviation
in green as a function of depth. Middle: The average count of
pore-space regions estimated by the Lifespan model with a band
of one standard deviation in green as a function of depth. These
values represent the number of contiguous pore-space regions with
depth. Right : The difference between the true number of pore-
space regions in the test images, as defined by an expert, and the
estimates given by the DPFD and Lifespan models.

the domain expert and visual calculation. We conclude this paper by outlining
several potential future directions.

First, it would be interesting to investigate the stability of the method. Stability
in this context means that small perturbation of the data leads to a small change in
the estimated Betti numbers which count the number of points labelled as features.
Stability of the persistence diagrams has been studied and proven [5, 8] under
certain reasonable classes of perturbations. As mentioned in the preprints [15, 19],
the DBSCAN method can be viewed as a Vietoris–Rips complex. It would be
interesting to combine results in [5, 8] and to investigate the stability of the DPFD
method.

Second, as discussed in [1], studying the distribution of short lifespan generators
in persistence diagrams is a challenging task. The core of the DPFD method is to
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extract the features. One may use DPFD as a medium to isolate the noisy gener-
ators (e.g. the yellow points in Figure 2(k)), and further investigate the statistical
properties of the points generated by noise.

Third, in terms of the application, the current paper concerns 2D slices of the firn
data. Our next project is to study 3D images of firn using DPFD. An important
aspect of firn modeling is determining the depths at which pores close off into
individual bubbles, because this is where atmospheric samples get trapped into the
layers of glacial ice. Currently, this depth of pore close-off is approximated using
the current-generation firn densification models, which are known to perform poorly
at some sites [18]. Studying our 3D firn data in a similar method will allow us to
track cavities as a function of depth and providing more accurate estimates of where
bubbles form in the firn column. Ultimately, this will improve climate scientists’
estimates of the timing of abrupt climate events from ice core records. One of
the practical issues for 3D cubical persistence diagram computation is memory
usage [22]. Recent advances in software1 allow for the efficient computation of
larger 3D images. We plan to combine this new software and our DPFD approach
to study topological features of 3D firn images as a means of better understanding
firn microstructure.
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